Algebraic methods in the theory of combinatorial designs

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Donald L. Kreher
Publisher: University of Nebraska - Lincoln
Year: 1984

Language: English
Commentary: PhD thesis at University of Nebraska - Lincoln

I. INTRODUCTION ------------------------------------------------------------- 1
1 .1 . PRELIMINARY REMARKS -------------------------------------------------------- 1
1.2. BACKGROUND ------------- -------------------------------------------------------------------------- 3
1.2 . a. DESIGN THEORY ------------------------------------------------------------------------ 3
1.2.b . LINEAR ALGEBRA ---------------------------------------------------------------------- 6
1 .2 .c . PERMUTATION GROUPS --------------------------------------------------------------- 8
1.3. CONVENTIONS -------------------------------------------------------------------------------------- 11
II. THE INCIDENCE ALGEBRA -------------------------------------------------------- 13
11.1. MOTIVATION --------------------------------------------------------------------------------------- 13
11.2. THE FUNDAMENTAL THEOREM --------------------------------------------------------------- 15
11.3. APPLICATIONS OF THE FUNDAMENTAL THEOREM ---------------------------------- 23
11.3 .a. GENERALIZED FISHERS INEQUALITY ------------------------------------ 24
11.3 .b. A CONJECTURE OF E. S. KRAMER --------------------------------------- 26
11.3 .c. GENERALIZED CONNOR'S INEQUALITIES ------------------------------ 30
III. CLASSIFICATION OF HOMOGENEOUS TRANSITIVE S(3 , {4,6} ,20) SYSTEMS 38
111.1. INTRODUCTION ------------------------------------------------------------------------------- 38
111.2. THE CASE v = 20 -------------------------------------------------------------------------- 40
111.3. THE STRUCTURE OF THE AUTOMORPHISM GROUP ------------------------------ 46
111.3 .a. THE CASE |omega| = 2 ----------------------------------------------------------------- 47
111.3 .b. THE CASE |omega| = 4 ----------------------------------------------------------------- 62
111.3.C. THE CASE |omega| = 5 --------------------------------------------------------------- 119
111.3 .d. THE CASE |omega| = 10 ------------------------------------------------------------- 123
111.4. SUMMARY -------------------------------------------------------------------------------------- 125
REFERENCES ------------------------------------------------------------------------------------------------------- 127