Algebraic Geometry--Open Problems

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): C. Ciliberto, F. Ghione, F. Orecchia
Series: Lecture Notes in Mathematics
Edition: 1
Publisher: Springer
Year: 1983

Language: English
Pages: 418
Tags: Математика;Высшая геометрия;Алгебраическая геометрия;

front-matter......Page 1
1On degeneration of projective curves......Page 8
2Varietes rationnelles et unirationnelles......Page 23
3Conic bundles on non-rational surfaces......Page 41
4Moduli of surfaces of general type......Page 97
5On a proof of Torelli's theorem......Page 120
6Two examples of algebraic threefolds whose hyperplane sections are Enriques surfaces......Page 131
7On the Brill-Noether theorem......Page 138
8Properties of Arakelov's intersection product......Page 145
9On nodal curves......Page 153
10About the enumeration of contacts......Page 163
11Un probleme du type Brill-Noether pour les fibres vectoriels......Page 204
12On the construction of rational surfaces with assigned singularities......Page 217
13Postulation des courbes gauches......Page 225
14Projective geometry of elliptic curves......Page 235
15Linkage of general curves of large degree......Page 274
16Some problems and results on finite sets of points in ℙn......Page 297
17Homogeneous bundles in characteristic p......Page 322
18The group of sections on a rational elliptic surface......Page 328
19On the Kodaira dimension of the Siegel modular variety......Page 355
20Generalized hilbert functions of Cohen-Macaulay varieties......Page 383
21Some curves in ℙ3 are set-theoretic complete intersections......Page 398
22Constructing enriques surfaces from quintics in P K3......Page 407
23Prym surfaces and a Siegel modular threefold......Page 411