Algebraic and Geometric Methods in Statistics

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This up-to-date account of algebraic statistics and information geometry explores the emerging connections between the two disciplines, demonstrating how they can be used in design of experiments and how they benefit our understanding of statistical models, in particular, exponential models. This book presents a new way of approaching classical statistical problems and raises scientific questions that would never have been considered without the interaction of these two disciplines. Beginning with a brief introduction to each area, using simple illustrative examples, the book then proceeds with a collection of reviews and some new results written by leading researchers in their respective fields. Part III dwells in both classical and quantum information geometry, containing surveys of key results and new material. Finally, Part IV provides examples of the interplay between algebraic statistics and information geometry. Computer code and proofs are also available online, where key examples are developed in further detail.

Author(s): Paolo Gibilisco, Eva Riccomagno, Maria Piera Rogantin, Henry P. Wynn
Edition: 1
Publisher: Cambridge University Press
Year: 2009

Language: English
Pages: 448
Tags: Математика;Теория вероятностей и математическая статистика;Математическая статистика;

Cover......Page 1
Half-title......Page 3
Title......Page 5
Copyright......Page 6
Dedication......Page 7
Contents......Page 9
List of contributors......Page 11
Preface......Page 15
Frequently used notations and symbols......Page 18
1.1 Introduction......Page 19
1.2 Explicit versus implicit algebraic models......Page 20
Example 1.1......Page 21
1.2.1 Design......Page 22
1.3.1 Model structure......Page 24
1.3.2 Inference......Page 27
1.3.3 Cumulants and moments......Page 29
1.4 Information geometry on the simplex......Page 30
1.4.2 Paths on the simplex......Page 31
1.6 Fisher information......Page 32
1.6.1 The generalised Pythagorean theorem......Page 34
1.7 Appendix: a summary of commutative algebra (with Roberto Notari)......Page 35
Definition 1.3......Page 36
Proposition 1.4......Page 37
Corollary 1.1......Page 38
Definition 1.14......Page 39
Proposition 1.13......Page 40
References......Page 41
Part I Contingency tables......Page 43
2.1 Introduction......Page 45
2.2 Latent class models for contingency tables......Page 46
2.3 Geometric description of latent class models......Page 49
Example 2.1......Page 50
2.4.1 Effective dimension and polynomials......Page 52
Example 2.3......Page 53
2.4.2 The 100 Swiss Franc problem......Page 54
2.5.1 Example: Michigan influenza......Page 65
2.5.2 Data from the National Long Term Care Survey......Page 66
2.6.1 Introduction and motivation......Page 70
Question 2.2......Page 71
Proposition 2.1......Page 72
Question 2.3......Page 73
Proposition 2.2......Page 74
2.1 Theorem......Page 75
Proposition 2.3......Page 76
2.7 Conclusions......Page 77
References......Page 78
3.1 Introduction......Page 81
3.2 Definitions and notation......Page 82
3.3 Parameter surfaces and other loci for 2 × 2 tables......Page 84
3.3.1 Space of tables for fixed conditional probabilities......Page 85
Proposition 3.1......Page 86
3.4.1 Specification I......Page 87
Lemma 3.1......Page 88
Proposition 3.2......Page 89
3.4.4 Odds-ratio specification......Page 90
Lemma 3.2......Page 91
Proposition 3.3......Page 92
3.5.4 Two odds-ratios......Page 94
3.6 Extensions and discussion......Page 95
3.6.1 Simpson's paradox......Page 96
3.7 Generalisations and questions......Page 97
References......Page 98
4.1 Introduction......Page 101
4.2 Model selection......Page 102
4.3.1 Metropolis-Hastings algorithm......Page 104
4.3.2 Diaconis-Sturmfels algorithm......Page 105
Example 4.1......Page 106
4.4 Reduction of computational costs......Page 108
Theorem 4.1......Page 109
4.5 Simulation results......Page 110
4.5.2 A simulation study of p-values......Page 111
4.5.3 Results for AZT data set......Page 112
References......Page 114
5.1 Introduction......Page 117
5.2 Arbitrary margins and toric ideals......Page 118
5.3 Survey of computational methods......Page 120
Example 5.1......Page 121
Proposition 5.2......Page 122
5.5 Additional examples......Page 123
Example 5.4......Page 124
Example 5.6......Page 125
5.6 Conclusions......Page 126
References......Page 127
6.1 Introduction......Page 129
6.2 Background and definitions......Page 131
Definition 6.2......Page 132
Example 6.1......Page 133
Proposition 6.1......Page 134
6.4 Geometric description of the models......Page 135
6.5 Adding symmetry......Page 136
Example 6.2......Page 137
6.6 Final example......Page 138
References......Page 139
7.1 Introduction......Page 141
7.2 Bivariate normal random variables......Page 143
Theorem 7.1......Page 144
Theorem 7.2......Page 146
Lemma 7.1......Page 147
Lemma 7.3......Page 148
Lemma 7.4......Page 149
References......Page 150
8.1 Introduction......Page 153
8.2 Terminology and notation......Page 155
8.3 The generalised shuttle algorithm......Page 156
Proposition 8.1......Page 158
Proposition 8.2......Page 159
8.5 Calculating bounds in the decomposable case......Page 160
Lemma 8.1......Page 161
Proposition 8.4......Page 162
8.5.1 Example: Bounds for the Czech autoworkers data......Page 163
8.6 Computing sharp bounds......Page 164
8.7 Large contingency tables......Page 165
8.8 Other examples......Page 166
Example 8.3......Page 167
Example 8.4......Page 168
Example 8.5......Page 169
8.9 Conclusions......Page 170
References......Page 171
Part II Designed experiments......Page 175
9.1 Introduction......Page 177
Example 9.1......Page 179
Example 9.3......Page 180
Theorem 9.1......Page 181
Example 9.6......Page 182
Example 9.7......Page 183
Conjecture 9.1......Page 184
9.4 Interpolation over varieties......Page 185
9.5 Becker-Weispfenning interpolation......Page 186
9.6 Reduction of power series by ideals......Page 187
Example 9.12......Page 188
9.7 Discussion and further work......Page 189
References......Page 190
10.1 Introduction......Page 193
Definition 10.1......Page 195
10.3 Biochemical network inference......Page 196
Example 10.1......Page 197
Example 10.2......Page 198
Example 10.3......Page 199
Example 10.4......Page 200
10.4 Polynomial dynamical systems......Page 201
10.5 Discussion......Page 202
References......Page 203
11.1 Introduction......Page 205
11.1.1 Outline of the chapter......Page 206
Example 11.2 (Example 11.1 cont.)......Page 207
Definition 11.1......Page 208
Example 11.6......Page 209
Definition 11.4......Page 210
Example 11.9......Page 211
Theorem 11.4......Page 212
Theorem 11.5......Page 213
Example 11.13......Page 214
Proposition 11.2......Page 215
Definition 11.6......Page 216
Example 11.14 (Example 11.13 cont.)......Page 217
Theorem 11.10......Page 218
11.6 Further comments......Page 219
References......Page 220
12.1 Introduction......Page 221
12.2.1 Full factorial design......Page 222
Definition 12.1......Page 223
Example 12.2......Page 224
12.2.4 Regular fractions......Page 225
Example 12.4 (Regular fraction)......Page 226
Example 12.5 (Permutation of levels - Example 12.4 cont.)......Page 227
Proposition 12.5 (Sudoku fractions)......Page 228
Definition 12.5 (Sudoku fraction)......Page 229
Proposition 12.7......Page 230
Definition 12.7......Page 231
12.4.1 Polynomial form of M1 and M2 moves......Page 232
Proposition 12.8......Page 233
12.4.2 Polynomial form of M3 moves......Page 234
Proposition 12.10......Page 235
Example 12.10 (Example 12.8 cont.)......Page 236
Proposition 12.12......Page 237
Proposition 12.14......Page 238
Example 12.12......Page 239
12.6 Conclusions......Page 240
References......Page 241
13.1 Introduction......Page 243
13.2.1 Conditional tests for discrete observations......Page 244
13.2.2 How to define the covariate matrix......Page 247
13.3.1 Models for the full factorial designs......Page 250
Proposition 13.1......Page 251
13.3.2 Models for the regular fractional factorial designs......Page 252
13.4 Discussion......Page 254
References......Page 255
Part III Information geometry......Page 257
14.1 Parametric estimation; the Cramér-Rao inequality......Page 259
14.2 Manifolds modelled by Orlicz spaces......Page 262
Example 14.1......Page 264
14.3 Efron, Dawid and Amari......Page 265
Definition 14.1......Page 266
Definition 14.2......Page 267
Definition 14.3......Page 268
Definition 14.4......Page 269
14.4.1 Quantum Cramér-Rao inequality......Page 270
Theorem 14.1......Page 271
14.5 Perturbations by forms......Page 272
References......Page 273
15.1 The work of Pistone and Sempi......Page 275
15.2.1 The underlying set of the information manifold......Page 277
15.2.2 The quantum Cramér class......Page 278
15.3 The Orlicz norm......Page 279
Theorem 15.1......Page 280
References......Page 281
16.1 Introduction......Page 283
16.2.1 Young functions and associated norms......Page 284
16.2.3 The quantum exponential Orlicz space and its dual......Page 285
16.3 The spaces......Page 286
Theorem 16.1......Page 287
Lemma 16.3......Page 288
Lemma 16.5......Page 289
Theorem 16.5......Page 290
Lemma 16.6......Page 291
Theorem 16.7......Page 292
Theorem 16.10......Page 293
References......Page 294
17.1 Introduction......Page 295
17.2 The role of geometry in statistical modelling......Page 296
17.3.1 Geometry elicitation......Page 298
17.3.2 Estimating geometry from data......Page 299
17.4 Congruent embeddings and simplicial geometries......Page 300
Proposition 17.1 ((Cencov .1982))......Page 302
Proposition 17.2 ((Campbell 1986))......Page 304
17.5 Text documents......Page 305
17.6 Discussion......Page 307
References......Page 308
18.1.1 Reproducing kernel Hilbert space......Page 309
Proposition 18.1......Page 310
18.1.2 Exponential manifold associated with a RKHS......Page 311
Lemma 18.2......Page 312
Theorem 18.1......Page 313
Proposition 18.2......Page 314
18.1.3 Mean and covariance on reproducing kernel exponential manifolds......Page 315
Theorem 18.4......Page 316
18.2.1 Likelihood equation on a reproducing kernel exponential manifold......Page 317
18.2.2 √n-consistency of the mean parameter......Page 318
18.2.3 Pseudo maximum likelihood estimation......Page 319
Theorem 18.6......Page 320
References......Page 322
19.1 A general framework......Page 325
Proposition 19.2......Page 326
Proposition 19.4......Page 327
Proposition 19.5......Page 328
Example 19.1 (Parametric exponential model)......Page 329
19.3.2 MLE for exponential models......Page 330
Proposition 19.6......Page 331
19.3.4 The compound Poisson density model......Page 332
Theorem 19.1......Page 333
Example 19.4......Page 334
Proposition 19.7......Page 335
Example 19.5......Page 336
Theorem 19.4......Page 337
Definition 19.6......Page 338
Proposition 19.11......Page 339
Lemma 19.4......Page 340
Definition 19.7......Page 341
Theorem 19.5......Page 342
Acknowledgements......Page 343
References......Page 344
20.1.1 Aspects of classical Fisher information......Page 345
20.1.2 Quantum counterparts......Page 347
20.1.3 Quantum statistics......Page 348
20.2 Metric adjusted skew information......Page 350
Definition 20.2 (metric adjusted skew information)......Page 351
Theorem 20.1......Page 352
Theorem 20.2......Page 353
Definition 20.4......Page 354
References......Page 355
Part IV Information geometry and algebraic statistics......Page 357
21.1.1 Differential geometry......Page 359
21.1.2 Commutative algebra......Page 360
21.2 A first example: the Gibbs model......Page 361
Example 21.1......Page 363
21.3 Charts......Page 365
21.3.1 e-Manifold......Page 366
21.3.3 Sub-models and splitting......Page 367
21.3.4 Velocity......Page 368
21.3.5 General Gibbs model as sub-manifold......Page 369
21.3.6 Optimisation......Page 370
21.3.7 Exercise: location model of the Cauchy distribution......Page 371
21.4 Differential equations on the statistical manifold......Page 372
Example 21.5 (Heat equation)......Page 373
21.4.1 Deformed exponentials......Page 374
Example 21.8 (Continuous white noise)......Page 376
21.5.1 Polynomial random variables......Page 377
Example 21.9......Page 378
Example 21.11 (Quadratic exponential models)......Page 379
Example 21.12 (Polynomial density with two parameters)......Page 380
References......Page 381
Part V On-line supplements......Page 385
Coloured figures for Chapter 2......Page 387
Definition 22.1 (Ring)......Page 391
Definition 22.4 (Degree Reverse Lexicographic Ordering)......Page 392
Definition 22.7 (Reduced Grobner basis)......Page 393
Definition 22.9 (Ideal of variety)......Page 394
Definition 22.10 (Segre map)......Page 395
Theorem 22.3......Page 396
Theorem 22.6......Page 397
22.2.1 Computing the dimension of the image variety......Page 398
22.2.2 Solving Polynomial Equations......Page 400
22.2.3 Plotting Unidentifiable Space......Page 402
22.3 Proof of the Fixed Points for 100 Swiss Franks Problem......Page 404
22.4 Matlab Codes......Page 405
Bibliography......Page 412
Proposition 8.2......Page 413
Lemma 8.2......Page 415
Lemma 8.3......Page 416
Proposition 8.4......Page 417
24.2 Proofs Proposition 12.8......Page 426
Proposition 12.10......Page 428
Proposition 12.11......Page 430
Proposition......Page 431
24.3 Generation and classification of all the 4 × 4 sudoku......Page 432
24.3.1 CoCoA code for 4 × 4 sudoku......Page 433
24.3.2 4 × 4 sudoku regular fractions......Page 435
24.3.3 4 × 4 non-regular sudoku fractions......Page 437
25.1 Proofs Theorem 11.3......Page 442
Theorem 11.8......Page 443
Theorem 11.9......Page 444
Proposition 19.4......Page 445
Theorem 19.2......Page 446
Corollary 19.3......Page 448