Afternotes on Numerical Analysis

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

There are many textbooks to choose from when teaching an introductory numerical analysis course, but there is only one Afternotes on Numerical Analysis. This book presents the central ideas of modern numerical analysis in a vivid and straightforward fashion with a minimum of fuss and formality. Stewart designed this volume while teaching an upper-division course in introductory numerical analysis. To clarify what he was teaching, he wrote down each lecture immediately after it was given. The result reflects the wit, insight, and verbal craftmanship which are hallmarks of the author. Simple examples are used to introduce each topic, then the author quickly moves on to the discussion of important methods and techniques. With its rich mixture of graphs and code segments, the book provides insights and advice that help the reader avoid the many pitfalls in numerical computation that can easily trap an unwary beginner.

Author(s): G. W. Stewart
Year: 1987

Language: English
Pages: 210

Contents......Page 6
Preface......Page 10
Nonlinear Equations......Page 12
Lecture 1......Page 14
Lecture 2......Page 20
Lecture 3......Page 28
Lecture 4......Page 38
Lecture 5......Page 48
Floating-Point Arithmetic......Page 54
Lecture 6......Page 56
Lecture 7......Page 64
Lecture 8......Page 72
Linear Equations......Page 78
Lecture 9......Page 80
Lecture 10......Page 88
Lecture 11......Page 94
Lecture 12......Page 100
Lecture 13......Page 108
Lecture 14......Page 114
Lecture 15......Page 124
Lecture 16......Page 130
Lecture 17......Page 138
Polynomial Interpolation......Page 144
Lecture 18......Page 146
Lecture 19......Page 152
Lecture 20......Page 158
Numerical Integration......Page 166
Lecture 21......Page 168
Lecture 22......Page 176
Lecture 23......Page 182
Numerical Differentiation......Page 190
Lecture 24......Page 192
Bibliography......Page 198
Index......Page 202