One of the major application targets of service robots is to use them as assistive devices for rehabilitation. This book introduces some latest achievements in the field of rehabilitation robotics and assistive technology for people with disabilities and aged people. The book contains results from both theoretical and experimental works and reviews on some new advanced rehabilitation devices which has been recently transferred to the industry. Significant parts of the book are devoted to the assessment of new rehabilitation technologies, the evaluation of prototype devices with end-users, the safety of rehabilitation robots, and robot-assisted neuro-rehabilitation. The book is a representative selection of the latest trends in rehabilitation robotics andВ can be used as a reference for teaching on mechatronic devices for rehabilitation.
Author(s): Z. Zenn Bien, Dimitar Stefanov
Series: Lecture Notes in Control and Information Sciences
Edition: 1
Publisher: Springer
Year: 2004
Language: English
Commentary: 31277
Pages: 441
Tags: Физическая культура и спорт;Спортивная медицина;
Advances in Human-Friendly Robotic Technologies for Movement Assistance Restoration for People with Disabilities
......Page 27
1.2.1 Robotic Systems for Movement Assistance......Page 29
1.2.3 Robots for Physical Rehabilitation......Page 31
1.2.5 Emotional Interactive Entertainment Robots......Page 32
1.4 Rehabilitation Robots in the Smart House Design......Page 34
1.5 Functional Integration of the Robotic Environment......Page 36
1.6 Commercialization of RR......Page 37
1.7 Some Issues for Futuristic Intelligent Robotic House Model......Page 40
1.8 Concluding Remarks......Page 42
Rehabilitation Robotics from Past to Present
......Page 48
2.2 Earliest Work......Page 49
2.3 Assistive Robotics......Page 50
2.3.1 Fixed Site......Page 51
2.3.2 Mobile Robots......Page 54
2.3.3 Wheelchair Mounted Manipulators......Page 56
2.4 Mobility......Page 58
2.5 Prosthetics and Orthotics......Page 59
2.6 Robot Mediated Therapy......Page 60
2.7 Robotics in Special Needs Education......Page 61
2.8 Robotics in Communications......Page 62
2.10 Commercialisation......Page 63
2.11 Alternatives to Robotics in Rehabilitation......Page 64
2.12 Conclusions......Page 65
Towards Human Friendly User Interface to Control an Assistive Robot in the Context of Smart Homes
......Page 68
3.2 MANUS Assistive Robot......Page 69
3.3 Networking Technologies and Developments......Page 70
3.4 General Software Architecture......Page 71
3.6.1 Gesture Library......Page 72
3.6.2 Obstacles Avoidance......Page 73
3.7 Towards the Co-autonomy Concept......Page 74
3.8 Conclusion......Page 76
Welfare-Oriented Service Robotic Systems
......Page 78
4.2.1 Questionnaire Survey......Page 80
4.2.1.2 Questionnaire Survey on Intelligent Wheelchair System......Page 81
4.2.1.4 Questionnaire Survey on Home Appliance Control by Intelligent Man-Machine Interface......Page 82
4.2.2.1 Intelligent Bed Robot System [37]......Page 83
4.2.2.2 Intelligent Wheelchair System [41]......Page 85
4.2.2.3 Transferring System......Page 86
4.2.2.4 Home Network and Management System [62]......Page 87
4.2.3.1 Soft Remote Control System [5, 19, 58]......Page 88
4.2.3.2 Intention Reading in Bed [37]......Page 89
4.2.3.3 Health Monitoring System [4, 49]......Page 91
4.3 KARES II System......Page 93
4.3.1 Questionnaire Survey......Page 94
4.3.2.1 H/W Structure of KARES II System......Page 95
4.3.2.2 S/W Structure of KARES II System: I/O Relations and Control Architecture......Page 96
4.3.3.1 Active Compliance Control of the Robotic Arm [10, 11, 12]......Page 98
4.3.3.2 Visual Servoing [43, 63]......Page 99
4.3.4 Intelligent Human-Robot Interfaces......Page 100
4.3.4.1 Eye-Mouse [42, 68]......Page 101
4.3.4.2 Biosignal-Based Interface [26]......Page 102
4.3.5 User Trials......Page 103
4.3.5.1 Robotic Arm......Page 104
4.3.5.2 Visual Servoing......Page 105
4.3.5.3 Eye-Mouse......Page 106
4.3.5.4 Head&Shoulder Interface......Page 107
4.3.5.5 EMG Interface......Page 109
4.4 Concluding Remarks......Page 110
5.1.1 The FRIEND Project......Page 116
5.1.2 Hardware Structure of FRIEND......Page 117
5.1.3 Multi-layered Control Architecture of FRIEND......Page 118
5.2.1.1 Object Detection......Page 122
5.2.1.2 Object Approaching, Grasping, and Crossover......Page 123
5.2.1.3 Beverage Pouring......Page 126
5.2.1.4 Put an Object Down......Page 129
5.2.2 Obstacle Avoidance......Page 130
5.2.3 Task Planning......Page 132
5.2.3.1 Task Representation......Page 133
5.2.3.2 High-Level-Plan Generation......Page 135
5.2.3.3 Low-Level-Plan Generation and Execution......Page 137
5.2.4 Demonstration-Based Programming......Page 139
5.3 Summary......Page 145
6.1 Introduction......Page 148
6.2 Background......Page 149
6.2.1 Domotic-Robotic Integrated System......Page 150
6.2.2 Localized System of Appliances......Page 151
6.3 Design Concept for the Giving-A-Hand System......Page 153
6.5 The Fetch and Carry Robot Appliance Development......Page 154
6.6 User-Centered Development......Page 156
6.7 Prototype of a Local Network with the Robot Appliance......Page 159
6.8 Summary and Conclusions......Page 161
7.1 Introduction......Page 163
7.2 Cooperative Robot System......Page 164
7.3 Measurement of Distance Using Stereo Images......Page 165
7.4.1 Detection of the Hand Area Using Color Image......Page 166
7.4.3 Detection of the Object Using Gesture Instruction......Page 167
7.5 Recognition of the Hand Gesture......Page 168
7.6 Experimental Results......Page 170
7.7 Conclusions......Page 172
8.2 Meal-Assistance Device “My Spoon”......Page 174
8.4 Basic Operation......Page 175
8.4.1 Setup......Page 176
8.4.3 Position Adjustment Command Set......Page 177
8.5.2 Semi-automatic Mode......Page 178
8.5.3 Automatic Mode......Page 179
8.6.1.2 Color Sample Extraction and Threshold Calculation......Page 180
8.6.2.2 Improving the Usability of Manual Mode......Page 181
8.7 Conclusion......Page 182
9.1 Introduction......Page 183
9.2 Visual Servoing......Page 185
9.3 Control Architecture......Page 186
9.4.1 Theory......Page 187
9.4.2 Implementation......Page 188
9.6 Experiments......Page 189
9.7 Conclusions and Future Work......Page 192
10.2.1 Framework of New Safety Standards for Robots......Page 193
10.2.2 Safety Standard for Machinery......Page 194
10.2.3 Risk Assessment Process and Risk Reduction......Page 195
10.3 Case Study on Safety of Rehabilitation Robots......Page 196
10.3.1 Risk Estimation......Page 198
10.3.3 Benefit Estimation......Page 199
10.4 Proposal of Risk Assessment Guideline for Rehabilitation Robots......Page 200
10.5 Conclusion......Page 201
11.2.2 Classification of Safety Strategies......Page 202
11.3.2 Selection of Evaluation Measures......Page 204
11.4 General Evaluation Method Using Evaluation Measures......Page 205
11.5.1 Safety Design Strategy......Page 207
11.5.2 Safety Control Strategy......Page 208
11.6.1 Formulating the Design Optimization Method......Page 209
11.6.2 Maximizing Safety Under Fixed Cost......Page 210
11.6.3 A New Method of Calculate a Safe Approach Motion......Page 211
11.7 Conclusions......Page 212
12.2 Tolerable Risk and Surface Injury......Page 214
12.3 Force Limitation Methods......Page 216
12.4 A Straight Movement-Type Force Limitation Mechanism......Page 217
12.5 A Three-Dimensional Force Limitation Mechanism......Page 219
12.6 Reflex Mechanism......Page 221
12.7 Conclusions......Page 222
13.1 Introduction......Page 223
13.3 Hardware and Software Organization......Page 224
13.3.2 Software Command Architecture......Page 225
13.5 Preliminary Results......Page 227
13.5.1 Modes and Time of Use......Page 228
13.5.2 Actions Number......Page 229
13.6 Discussion......Page 230
13.7 Conclusion......Page 231
14.1 Introduction......Page 233
14.2 Wheelchair Mounted Service Manipulator ARM......Page 234
14.3.2 Indication Criteria......Page 235
14.3.3 Stand-Alone Test......Page 236
14.3.6 Training......Page 238
14.4 The Future Process of Prescribing the ARM......Page 239
14.5.1 User Study Conducted by iRV......Page 240
14.5.2 User Study Conducted by hetDorp......Page 241
15.1 Introduction......Page 243
15.2 Mechanical Structure......Page 244
15.3 Sensory System......Page 245
15.4.1 Slider Position Sensor......Page 246
15.4.2 Tendon Tensiometer......Page 248
15.4.3 Thumb Position Sensor......Page 249
15.4.4 Force Sensor......Page 250
15.5 Conclusions......Page 251
16.1 Introduction......Page 253
16.2 Design of WREX......Page 254
16.3 Gravity Balancing With ≠ 0 x......Page 255
16.5 Results......Page 258
17.1 Introduction and Related Works......Page 261
17.1.1 Methods for Navigation......Page 262
17.1.2 Path Planning and Navigation to the Goal......Page 265
17.2.2.1 Assumptions Regarding the House Environment:......Page 266
17.2.2.3 Four Modes of Wheelchair Operation:......Page 267
17.3 Localization of the Wheelchair Position......Page 268
17.4 Scenario of the Wheelchair Control......Page 270
17.5 Navigation System......Page 272
17.6 Computer Simulation of the Control Algorithm......Page 274
17.6.1 Wheelchair Kinematics......Page 275
17.6.2 Modeling of the Sensors and Their Arrangement on the Wheelchair Platform......Page 277
17.6.3.1 Map of the Indoor Environment......Page 280
17.6.3.2 Map Update......Page 281
17.6.3.3 Path Generation and Task Execution......Page 283
17.6.4 Graphic User Interface (GUI) of the Wheelchair Simulator......Page 289
17.7.1 Navigation to Multiple Goals......Page 291
17.7.2 Obstacle Avoidance......Page 292
17.7.3 Avoiding a “Trap”......Page 294
17.7.4 Navigation in a Complex Environment......Page 296
17.7.5 Route Generation in Partially Known Environment......Page 300
17.8 Future Plans and Concluding Remark......Page 301
18.1 Introduction......Page 307
18.2 Related Works......Page 308
18.3 Requirements......Page 309
18.4.1 Hardware Configuration......Page 310
18.4.2 Software Design for Real-Time System......Page 311
18.5.1 Localization......Page 312
18.5.2 Hierarchical Control Architecture......Page 314
18.6 Experiments......Page 315
18.7 Conclusion......Page 317
19.1 Introduction......Page 319
19.2 Electrically Assisted Walker......Page 320
19.3.1 Requirements for the Force Sensor......Page 321
19.3.2 Sensor Structure......Page 322
19.3.3 Sensing Method......Page 323
19.3.4 Advantages......Page 324
19.4 Experiments......Page 325
19.6 Summary......Page 327
20.1.1 The Functions of Do-u-mi Robot......Page 329
20.2 Overall System of Do-u-mi Robot......Page 331
20.3 Sound Localization......Page 332
20.4 Face Tracking......Page 333
20.4.1.3 Face Pattern-Matching......Page 334
20.5 Autonomous Navigation......Page 336
20.6 Conclusion......Page 337
21.1 Introduction......Page 339
21.2.1.1 Mobile Base......Page 340
21.2.1.2 Body Weight Support Mechanism......Page 341
21.2.2.1 Experimental Protocol......Page 342
21.2.2.2 Results......Page 343
21.3.1.1 Body Weight Support......Page 344
21.3.2 Control Method......Page 346
21.4 Conclusion......Page 348
A Gentle Approach to Robot Assisted Neuro-Rehabilitation
......Page 351
22.1 Background to Stroke......Page 352
22.2 Gentle/S......Page 353
22.2.1 Assumptions......Page 354
22.3 Clinical Prototype for Machine Mediated Neurorehabilitation......Page 355
22.3.1 Antigravity Mechanism for the Shoulder and Elbow......Page 357
22.3.2 Exercises & Movement Guidance......Page 358
22.4 Clinical Trials......Page 361
22.4.1 Outcome Measures......Page 362
22.4.2 Data Analysis and Statistical Methodology......Page 363
22.4.3 Results......Page 364
22.5 Conclusions......Page 365
23.1 Introduction......Page 368
23.1.1 Advantages of Wire Driven Robots......Page 369
23.2 Manipulability and Wire Tension Computation......Page 370
23.3 NeRebot: An Example of Wire Driven Robot for Rehabilitation......Page 372
23.3.1 Software and Control......Page 375
23.3.2 Treatment Protocol......Page 376
23.4 Conclusions and Future Research......Page 377
24.1 Introduction......Page 379
24.2 Specification for a New Wrist Device......Page 382
24.2.1 Kinematic Selection......Page 383
24.2.3 Actuator Selection......Page 384
24.3 Alpha-Prototype Overview 4......Page 385
24.4 Robotic Therapy......Page 388
24.5 Conclusions......Page 390
25.1 Introduction......Page 393
25.2 Analysis of Spastic Upper Limb Physiotherapy......Page 394
25.3.1 Mechanical Design......Page 396
25.3.3 Control Design......Page 401
25.3.4 User Interface and Programming......Page 403
25.3.5 Safety Measures and Devices......Page 404
25.4 Testing and Calibration......Page 405
25.5.1 Subjects of the Clinical Trial......Page 407
25.5.2 Assessment Results......Page 408
25.5.3 Analysis of Assessment Results......Page 410
25.6 Conclusions......Page 411
26.1 Introduction......Page 414
26.3 Robotic Mechanisms Design......Page 415
26.4 Human/Robot Interface......Page 420
26.5 Sensory Systems......Page 421
26.6 Control Algorithms......Page 423
26.7 Conclusion......Page 425
27.1 Introduction......Page 426
27.2 Emerging Demographics and Healthcare Trends......Page 427
27.3 Emerging Technologies Relevant to Robotics......Page 428
27.4 RoadBlocks and Enablers of Robotic Applications in Rehabilitation......Page 430
27.6 Conclusions......Page 431
Subject
Index......Page 433