This book outlines a selection of exciting advances currently being made worldwide in the field of modern engineering at the nanometer scale. Leading scientists and engineers give a general overview of research advances in their specialized subject areas. They also describe some of their own cutting-edge research and give their visions of the future. Written in a popular and well-illustrated style, the articles are written by young scientists many of whom hold, or have held, prestigious Royal Society or EPSRC Fellowships. Carefully selected by Professor A G Davies and Professor J M T Thompson FRS, topics include: the fabrication and measurement of nanoelectronic devices, organic conductors, and bioelectronic materials; the assembly of such structures into appropriate configurations, including the use of biological processes to drive the assembly; the development of new materials including both organic and inorganic wires, carbon nanotubes, and magnetic materials; and finally, the analysis and characterization of these structures. The book conveys the excitement and enthusiasm of the authors for their work at the frontiers of modern engineering nanotechnology. All are definitive reviews for readers with a general interest in the future directions of science and engineering at the nanometer scale.
Author(s): A. G. Davies, A. G. Davies, J. M. T. Thompson
Series: Royal Society Series on Advances in Science
Edition: illustrated edition
Publisher: Imperial College Press
Year: 2007
Language: English
Pages: 328
Tags: Специальные дисциплины;Наноматериалы и нанотехнологии;
CONTENTS......Page 8
PREFACE......Page 6
INTRODUCTION Giles Davies......Page 14
Acknowledgments......Page 19
1 Introduction......Page 20
2.1 Fullerene discovery and bulk synthesis......Page 22
2.2 From giant fullerenes to graphitic onions......Page 23
2.3.1 Identi.cation and structure of carbon nanotubes......Page 24
2.3.2 Carbon nanotube production methods......Page 25
2.3.4 Electronic properties of carbon nanotubes......Page 29
2.3.7 Negatively curved graphite: Helices, toroids, and schwarzites......Page 30
3.1 Field emission sources......Page 33
3.5 Molecular sensors......Page 34
3.6 Carbon–carbon nanocomposites: Joining and connecting carbon nanotubes......Page 35
3.9 Biological devices......Page 37
4 Conclusions and FutureWork......Page 38
References......Page 40
2. INORGANIC NANOWIRES Caterina Ducati......Page 46
1 Introduction......Page 47
2.1 Low-temperature chemical vapor deposition of silicon nanowires......Page 49
2.2 Synthesis of RuO2 nanorods in solution......Page 54
2.3 Physical methods for the synthesis of SiC nanorods and NiS–MoS2 nanowires......Page 57
3 Outlook......Page 60
References......Page 63
3. MULTILAYERED MATERIALS: A PALETTE FOR THE MATERIALS ARTIST Jon M. Molina-Aldareguia and Stephen J. Lloyd......Page 68
1 Introduction......Page 69
2 Multilayers......Page 70
3 ElectronMicroscopy......Page 73
4 Hard Coatings......Page 74
4.1 TiN/NbN multilayers: A case where plastic .ow is confined within each layer......Page 78
4.2 TiN/SiNx multilayers: A case where columnar growth is interrupted......Page 80
4.3 TiN/SiNx multilayers revisited: A case where totally new behavior (not found in the bulk at all) is unraveled when the layers are made extremely thin......Page 81
5 Metallic Magnetic Multilayers......Page 84
6 Conclusion and Future Developments......Page 87
References......Page 88
1 Nature Inspires Engineering......Page 92
2 Nature Becomes Engineering......Page 95
3.1 The future......Page 111
References......Page 113
1 Introduction......Page 118
2 Molecular Recognition......Page 119
3 Self-Assembly......Page 123
4 Self-Assembly with Covalent Modi.cation......Page 129
5 Supramolecular Approaches to Molecular Machines......Page 131
References......Page 135
1 Introduction......Page 140
2 Functionalized Surfaces......Page 145
3 DNA-Based Branched Complexes......Page 155
4 Manipulation of DNA by Electric Fields......Page 160
Acknowledgments......Page 167
References......Page 168
1 Introduction......Page 180
2 Molecular Electronics......Page 182
3 Assembling Proteins at Electroactive Surfaces......Page 185
4 Protein Tunnel Transport Probed in an STM Junction......Page 186
5.1 Tunnel transport under conditions of low to moderate load......Page 189
5.2 Modulation of protein conductance under moderate load......Page 195
5.3 Accessing the metallic states: Negative di.erential resistance......Page 197
6 Conclusions......Page 200
References......Page 201
1 Introduction: Size and Frequency Limits for Modern Electronic Systems......Page 208
2.1 Conflning electrons......Page 211
2.2 Electron pumps and turnstiles......Page 216
2.3 Surface acoustic wave devices......Page 218
3.1 Excitation and detection......Page 220
3.2 Transmission of signals......Page 223
4 Future Prospects......Page 224
References......Page 226
9. ERASABLE ELECTROSTATIC LITHOGRAPHY TO FABRICATE QUANTUM DEVICES Rolf Crook......Page 230
1 Quantum Devices......Page 231
1.1 Fabrication......Page 232
2.1 Local anodic oxidation......Page 235
2.2 Scribing......Page 236
3 Erasable Electrostatic Lithography......Page 237
3.1 Characterizing erasable electrostatic lithography......Page 240
3.2 Future developments......Page 242
4.1 Quantumwires......Page 243
4.2 Quantum billiards......Page 247
4.3 Quantumrings......Page 249
4.4 Future devices......Page 250
References......Page 251
10. ULTRAFAST NANOMAGNETS: SEEING DATA STORAGE IN A NEWLIGHT Robert J. Hicken......Page 256
2 What Makes a Magnet?......Page 257
3 How Are Nanomagnets Different?......Page 260
4 Recording Technology and Speed Bottlenecks......Page 264
5 Observing Ultrafast Magnetization Dynamics......Page 267
6 Harnessing Precession......Page 268
7 Optical Modification of the Spontaneous Magnetization......Page 271
8 Future Trends......Page 273
References......Page 275
1.1 The need for nanoscale resolution optical microscopy......Page 278
1.2 Breaking the diffraction limit......Page 279
1.3 Scanning near-field optical microscopy......Page 280
1.4 Nano-optics: The path toward nanometer optical resolution......Page 281
2.1 Implementation......Page 282
2.2 Near-field fluorescence microscopy of light-emitting polymer blends......Page 283
2.3 Beware of artifacts......Page 286
3.1 Near-field optical microscopy with a metal or dielectric tip......Page 287
3.2 “Single-molecule” fluorescent probes for SNOM......Page 288
4.1 Tip-enhanced Raman scattering......Page 289
4.2 Tip-enhanced fluorescence......Page 290
Acknowledgments......Page 292
References......Page 293
1 Introduction......Page 296
1.1 Principles......Page 297
1.2 Probes......Page 300
1.3 Excitation schemes......Page 301
1.4 Collection optics......Page 303
1.5 Detectors......Page 304
2.1 Single molecule signatures......Page 305
2.2 Photon antibunching......Page 306
2.3 Fluorescence lifetimes......Page 308
2.4 Polarization spectroscopy......Page 309
2.5 Wide-field orientation imaging......Page 310
2.6 Fluorescence correlation spectroscopy.......Page 312
2.7 Spectral diffusion......Page 314
2.8 Fluorescence resonance energy transfer......Page 315
2.9 Single molecule localization......Page 316
3 Outlook......Page 318
References......Page 319
INDEX......Page 326