Advances in Metallacrown Chemistry

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This volume focuses on recent developments in metallacrown chemistry. While the field was established in 1989 by Professor Vincent Pecoraro and numerous applications had been proposed, there has been a recent surge in the practical applications for this class of molecules. Written by leaders in the metallacrown chemistry field this book addresses recent developments. The single-molecule magnet properties of metallacrowns are presented along with discussions on their ability to bind DNA, as well as their potency to serve as building blocks for supramolecular structures. The volume is not only intended for those who work directly in the field of metallacrowns but it also appeals to those working in the aligned fields of metallamacrocyclic chemistry, self-assembly chemistry, and supramolecular chemistry. This dedicated volume serves as an encyclopedic reference for those wishing to gain insight into the field.

Author(s): Curtis M. Zaleski
Publisher: Springer
Year: 2022

Language: English
Pages: 387
City: Cham

Preface
Acknowledgments
Contents
Contributors
Host–Guest Chemistry of Metallacrowns
1 Molecular Recognition in Macrocycles
1.1 Organic Recognition Agents
1.2 Metallacrowns
1.3 Binding Larger Metals
2 Building up Systems of Greater Complexity
3 15-MC-5 Host–Guest Chemistry
3.1 Central Ion as Guest in 15-MC-5
3.2 15-MC-5 Structures
3.3 Anion Recognition
3.4 Porous Structures
3.5 Measuring Guest Affinities
4 Conclusion
References
Aspects of NMR Characterization of Metallacrowns
1 Introduction
1.1 Pulsed-Gradient Spin-Echo NMR
1.2 1H-NMR of Paramagnetic Complexes
1.3 1H-NMR of Lanthanide Complexes
2 Interaction of Metallacrowns with Inorganic and Organic Anions
2.1 Interaction of Mn(III) Metallacrowns with Anions
2.2 Interaction of Copper(II) 15-MC-5 with Monocarboxylates
2.3 Formation of Dimeric Capsules
3 Metal Exchange Equilibria
3.1 Metal Exchange in Manganese(II/III) 12-MC-4 Complexes
3.2 Metal Exchange in Copper(II) 12-MC-4 and 15-MC-5 Complexes
4 MC Rearrangements and Ligand Exchange
4.1 MC Expansion
4.2 Ligand Exchange in Copper(II) Metallacrowns
5 Ln(III)/Mn(III) and Ln(III)/Cu(II) MCs: Insight on Their Structure in Solution
5.1 Ln(III)/Mn(III) 12-MC-4 Complexes
5.2 Ln(III)/Cu(II) 15-MC-5 Complexes
6 Conclusions
References
Influence of the Hydroxamate Ligands’ Structure on the Thermodynamic Properties and Structure of Metallacrown Complexes
1 Introduction
2 Hydroxamate Derivatives as Ligands for MCs
2.1 Acid–Base Properties
3 Self-assembly of Metallacrown Complexes
3.1 Metallacrown Structural Paradigm
4 Thermodynamic Properties of Metallacrown Complexes
4.1 Cu(II) Complexes
4.2 Ni(II) Complexes
4.3 Zn(II) Complexes
5 Structural Studies
5.1 MC Complexes Based on Hydroxamates Functionalized with O-Donors in β-Position
5.2 MC Complexes Based on α-Functionalized Hydroxamates
6 Metallacrowns Building Blocks
References
Metallacrowns as DNA Binders
1 DNA as a Target for Ligand Binding
2 Analytical Techniques for Studying Ligand/DNA Interactions
3 Metallacrown Complexes with DNA
3.1 Metallacrowns as Double-Stranded DNA Ligands
3.2 Metallacrowns as G4 DNA Ligands
4 Conclusions
References
Magnetic Metallacrowns: From Randomness to Rational Design
1 Introduction
1.1 Molecular Magnetism
1.2 Synthetic Strategies for Preparing Molecular Magnets
1.3 Single-Molecule, Single-Ion, and Single-Chain Magnets
2 Metallacrowns
2.1 Structural Control of Metallacrowns
3 Pseudo-Metallacrowns with Single-Molecule Magnetic Properties
3.1 28-MC-10: DyIII6MnIII4MnIV2, the First Mn-4f Single-Molecule Magnet
3.2 22-MC-8: DyIII4MnIII6Displays Slow Magnetic Relaxation
3.3 16-MC-6: DyIII4MnIII4 Displays Slow Magnetic Relaxation
3.4 26-MC-8: Lanthanide Choice Leads to Different Magnetic Responses
3.5 14-MC-5: The Development of Planar Metallacrowns as SMMs
3.6 12-MC-4, 16-MC-6, and 20-MC-7: Using Diamagnetic Ring Metals to Probe Lanthanide Coupling
4 Single-Molecule Magnetic Metallacrowns
4.1 12-MC-4s
4.2 15-MC-5s
References
Beyond the Metallacrown: Controlling First- and Second-Order Coordination Spheres Towards Discrete and Extended Architectures
1 An Introduction to Discrete Host–guest Assemblies Centred on Metallacrown Host Units
2 Fluoro-Centred Host Metallacrowns and Their Guest Enticing Abilities
2.1 Hexacopper Fluoro Azametallacrown Cavitands as Hosts for Cationic Guests
2.2 Guest Binding Within F-bridged Octametallic 16-MCCr(III)-8 [Cr8] Metallacrowns
2.3 Heterometallic [Cr(III)7M(II)] (M = Mn, Fe, Co, Ni, Zn, Cd and Mg) Metallacrowns (and Variations on the Theme)
3 Organometallic 12-MCM(III)-3 (M = Ru, Rh, Ir) Metallacrown Hosts
3.1 Redox Responsive 12-MCM(III)-3 (M = Ru, Rh) Metallacrown Li+ and Na+ Receptors
3.2 The Accommodation of F-containing Guests Within 12-MCM(III)-3 (M = Ru, Rh, Ir) Metallacrowns
3.3 Selective Li+ Ion Detection in Water and Serum
3.4 The Role of a 16-Membered Metallacrown in the Interconversion of Two Nanocages
4 Controlling the First Coordination Sphere Towards Selective Binding and Topology Control
4.1 Hexametallic 18-MCCu(II)-6 Pertechnetate and Perrhenate Scavengers
4.2 Pentanuclear 12-MCCu(II)-4 Metallacrowns as Building Blocks Towards 1- and 2-D Extended Networks
4.3 Inverse Metallacrowns and Inverse Crown Ether Complexes
4.4 Triple Decker Inverse 12-MCCu(I)-pz-4 Azametallacrowns
4.5 An Inverse 9-MCCu(II)-3 Metallacrown as Host to an Anti-Inflammatory
4.6 Inverse Crown Ether Complexes and Their Solid-State Hosting Abilities
5 Concluding Remarks
References
Water-Soluble 15-Metallacrown-5 Complexes: Molecular Structures and Properties
1 Introduction
2 15-MC-5 Structural Paradigm
2.1 Computational Study of the Formation Process
3 Synthetic Approaches to Aqua Complexes
3.1 Structures of Aminohydroximate Ln(III)–Cu(II) 15-MC-5 Aqua Complexes
4 Solution-State Behavior
4.1 Toward MRI Applications
4.2 Toward Hydrothermal Single-Source Precursors of Nanomaterials
5 New Similarities and Analogues: Bi(III) Versus Ln(III)
References
Metallacrown-Based Catalysts for Water Oxidation and CO2 Conversion
1 Water Oxidation
2 CO2 Conversion
3 Summary
References
A Structural Examination of Metallacrowns with Main Group Elements in the Ring Positions
1 Introduction
2 Gallium-Containing Metallacrown Complexes
2.1 Gallium 12-MC-4 Structures
2.2 Gallium 12-MC-4 Dimer Structures
2.3 Non-standard Gallium-Containing Metallacrowns and Metallacryptates
3 Other Main Group Metallacrown Complexes
3.1 Aluminum-Containing Metallacrowns and Metallacryptates
3.2 Tellurium-Containing Metallacrowns
3.3 Tin-Containing Metallacrowns
4 Azametallacrown Complexes with Main Group Elements
4.1 Gallium and Indium Azametallacrowns
4.2 Other p-Block Azametallacrowns—Aluminum, Silicon, and Tin
4.3 Alkali Metal Azametallacrowns—Lithium and Sodium
5 Conclusion
References
Index