Advances in Hydroinformatics: Models for Complex and Global Water Issues―Practices and Expectations

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book includes a collection of extended papers based on presentations given during the SIMHYDRO 2021 conference, held in Sophia Antipolis in June 2021 with the support of French Hydrotechnic Society (SHF). It focused on "Models for complex and global water issues―Practices and expectations”. The water field is continuously mobilizing models for addressing complex issues and new challenges. Within the context of the climate change, the water issues are exacerbated with the competition among uses. The limited water resources request from the modern societies to review some of the historical paradigms traditionally used and to promote new approaches for a sustainable management. The combined complexity and vulnerability of large urban environments request a deep understanding of water uses and environmental synergy. At the same time, water-related natural hazards are contentiously straightening modern societies that must adapt and implement a more resilient environment. In parallel, in the industrial sector, the search for a high level of efficiency for hydraulic machinery requests to simulate complex processes. Under all these situations, the models currently used represent only partly the physical phenomena involved, the scale of the processes, the hypothesis included within the different numerical tools, etc. The design and the operation of relevant models represent a challenging task for the modeller who is responsible of the knowledge part of a global system that is dedicated to support the decision makers. The book explores both the limitations and performance of current models and presents the latest developments based on new numerical schemes, high-performance computing, multi-physics and multi-scales methods, and better interaction with field or scale model data. It addresses the interests of practitioners, stakeholders, researchers, and engineers active in this field.

Author(s): Philippe Gourbesville, Guy Caignaert
Series: Springer Water
Publisher: Springer
Year: 2022

Language: English
Pages: 1263
City: Singapore

Preface
Contents
Part I Numerical Methods and Uncertainties
1 Local Downscaling of Shallow Water Simulations
1.1 Introduction
1.2 Methods
1.2.1 Upscaling Versus Downscaling
1.2.2 Problem Position
1.2.3 Proposed Downscaling Approach
1.2.4 Training Sequence
1.3 Results
1.3.1 Idealized Urban Layout
1.3.2 Real World Test Case
1.4 Conclusions
References
2 SW2D-Lemon: A New Software for Upscaled Shallow Water Modeling
2.1 Introduction
2.2 Modelling
2.2.1 Equations and Source Terms
2.2.2 Numerical aspects
2.3 Software Features
2.3.1 Input Files
2.3.2 Output Files
2.3.3 SW2D Workflow
2.4 Licensing and Installing
2.4.1 Licensing
2.4.2 Installing SW2D
2.5 Test Cases
2.5.1 Gardon Test Case
2.5.2 Sacramento Test Case
2.6 Conclusion
References
3 A 1D Numerical Tool for Real Time Modelling of a Complex River Network
3.1 Introduction
3.2 1D Modelling
3.2.1 Mage
3.2.2 Mascaret
3.3 A Complex Tidal River Network: The Adour River
3.3.1 Localisation of the Study Site
3.3.2 Construction of the Model
3.4 Modelling Results on a Typical Flood Period
3.4.1 Hydraulic Conditions
3.4.2 Results with Simple Models Without Storage Area
3.5 Improvement of the Mage Model Using Storage Areas
3.5.1 Construction of Storage Areas on the Nive River
3.5.2 Results with the Mage Models Including Storage Areas
3.6 Conclusions
References
4 Rapid Simulations of Large Scale Flood Inundations Using Porosity Functions
4.1 Introduction
4.2 Method
4.3 Study Site, Available Data and Model Setup
4.4 Preliminary Results
4.5 Conclusions
References
5 New Developments in a 1D+ ISM Model for Operational Purposes
5.1 Introduction
5.2 Validation of ISM Under Unsteady Conditions
5.2.1 ISM Formulation Under Unsteady Flow Conditions
5.2.2 Solver Modifications in Code MAGE
5.2.3 Validation Against Laboratory Data
5.3 Further Developpements for Operational Purposes
5.3.1 Derivation of Well-Suited Boundary Conditions
5.4 ISM Validation Against Field Data
5.5 Conclusions
References
6 Application of a Modified Parareal Method for Speeding Up the Numerical Resolution of the 2D Shallow Water Equations
6.1 Introduction
6.2 The Parareal Method and Its Variations
6.2.1 The Classical Parareal Method
6.2.2 The ROM-Based Parareal Method
6.3 Improvement of the Rom-Based Parareal Method
6.4 Numerical Examples
6.4.1 Influence of the Truncation Thresholds for the Model Reduction
6.4.2 Comparison Between the Variants of the Parareal Method
6.5 Conclusions
References
7 Validation of a General-Purpose Erosion-Sedimentation Model on a Laboratory Experiment
7.1 Introduction
7.2 Materials and Methods
7.2.1 A Model for Material Transfer
7.2.2 A Software for the Resolution of the Coupled System: Shallow Water and Transfer Model
7.2.3 Laboratory Experiment
7.2.4 Computation Outputs
7.3 Results and Discussion
7.3.1 Comparison of Simulation and Laboratory Results
7.3.2 Possible Improvements of the Model
7.4 Conclusion and Perspectives
References
8 Modelling Culverts in Basilisk
8.1 Introduction
8.2 Culvert Modelling
8.2.1 Equations and Simplifications
8.2.2 Implementation in the Numerical Solver
8.3 Methodology
8.3.1 Numerical Scheme (Finite Volumes)
8.3.2 Culvert Module
8.4 Evaluation and Verification
8.4.1 Laboratory Test Case
8.4.2 Reno River Case
8.5 Conclusion
References
9 Uncertainty Quantification in Hydrodynamic Modeling Using the Example of a 2D Large-Scale Model of the River Elbe
9.1 Introduction
9.2 Uncertainty Quantification
9.2.1 Initialization
9.2.2 Probabilistic Approach
9.2.3 Uncertainty Analysis
9.3 Case Study Elbe
9.3.1 The Elbe Model
9.3.2 Uncertain Parameters
9.3.3 Investigations
9.4 Results and Discussions
9.4.1 Steady State Investigations Using FOSM Method
9.4.2 Steady State Investigations Using the MC Method
9.4.3 Investigations of Artificial Flood Event
9.5 Conclusions
References
10 Quantification of Historical Skew Surges: Challenges and Methods
10.1 Introduction
10.2 Data, Methods and Uncertainties on the Computation of Historical Skew Surges
10.2.1 Difficulties on the Computation of Historical Skew Surges
10.2.2 The Historical Documents Quality Method
10.2.3 Case Studies: The Storms with Coastal Floodings of November 16, 1940 and February 15–16, 1941
10.3 Conclusions
References
11 Sensitivity Analysis of the Digital Twin of the Canal of Calais to the Outlet Gate Modelling
11.1 Introduction
11.2 Management of the Calais Canal
11.2.1 Description
11.2.2 Management
11.3 Simulation Architecture of the Calais Canal
11.3.1 Digital Twin
11.3.2 Gate Dynamics
11.4 Past Scenarios Determination
11.4.1 Implementation of New Gate Dynamics
11.4.2 Estimation of Unknown Inputs
11.5 Conclusions
References
12 Integrated Hydraulic-Hydrological Assimilation Chain: Towards Multisource Data Fusion from River Network to Headwaters
12.1 Introduction
12.2 Models and Methods
12.2.1 Multi-dimensional Hydraulic Model
12.2.2 Hydrological Model
12.2.3 Inverse Method
12.3 Results
12.3.1 Hydraulic Cases: effective 1D-like Modeling
12.3.2 Twin-Experiment on Hydraulic-Hydrological Model
12.4 Discussion
References
13 Meandering of the Venoge River at Bois-de-Vaux: In Situ Measurements Versus 2D Numerical Predictions
13.1 Introduction
13.2 Restoration Project
13.3 Follow-Up Campaign
13.3.1 Flood Events
13.3.2 Registered Data
13.3.3 Evolution of the Restored River
13.4 Comparison with 2D Numerical Model
13.4.1 Numerical Prediction
13.4.2 Agreements and Discrepancies Between in Situ Measure and Model Prediction
13.5 Conclusions
14 How to Optimally Represent Riverbed Geometry with a Simplified Cross-Section Shape in Shallow Water Models
14.1 Introduction
14.2 Methodology
14.2.1 Equivalent Cross-Section Shape
14.2.2 Optimisation Methods: Minimizing the Root Mean Square Error Cost Function
14.2.3 Validation Procedure
14.3 Results and Discussion
14.3.1 Application Test Case
14.3.2 New Simplified Sections
14.3.3 Comparison of Optimization Methods
14.3.4 Comparison of the Simplified and Real Model Under HEC-RAS
14.4 Conclusions
References
15 Evaluate the Influence of Groynes System on the Hydraulic Regime in the Ha Thanh River, Binh Dinh Province, Vietnam
15.1 Introduction
15.2 Study Area
15.3 Methodology and Materials
15.3.1 Methodology
15.3.2 Materials
15.4 Model Setup
15.4.1 Initial Condition and Boundary Condition
15.4.2 Model Calibration and Validation
15.4.3 Scenario
15.5 Results and Discussions
15.5.1 Scenario KB1
15.5.2 Scenario KB2
15.5.3 Scenario KB3
15.5.4 Scenario KB4
15.6 Conclusions
References
16 Comparison of Streamflow Estimated by Image Analysis (LSPIV) and by Hydrologic and Hydraulic Modelling on the French Riviera During November 2019 Flood
16.1 Introduction
16.2 Data
16.2.1 Studied Area
16.2.2 Terrain Elevation and Surface
16.2.3 Rainfall
16.2.4 Videos
16.2.5 Observed Discharges
16.3 Method and Models
16.3.1 LSPIV Algorithms
16.3.2 Rainfall-Runoff Model
16.3.3 Hydraulic Model
16.4 Results
16.4.1 Rainfall-Runoff Simulations
16.4.2 Hydraulic Simulations
16.4.3 LSPIV Streamflow Estimations
16.4.4 Comparison Between the Streamflow Estimations
16.5 Discussion
16.6 Conclusion
References
17 Analysis of Triple Rectangular Plates Configurations Impacts on Local Scour Around Cylindrical Single Bridge Pier
17.1 Introduction
17.2 Experiments and Methods
17.2.1 Clear Water Calculations
17.3 Results
17.3.1 Equilibrium Scour Test
17.3.2 Scour Pattern
17.3.3 Quantitative Results
17.4 Conclusion
References
Part II Flood Modelling and Mitigation Actions
18 2-D Simulation of Flow Entering a Building
18.1 Introduction
18.2 Testing the Validity of the 2-D Model
18.2.1 Comparison of the Flow Patterns
18.2.2 Intrusion Flow Discharges and Conclusions
18.3 Effect of the Obstacles on the Flow Discharge Through the Opening
18.3.1 Presentation of the Obstacles and Experimental Data
18.3.2 Results for the Flow Discharge Qw
18.4 Conclusions
References
19 Investigation of the Hydraulics in Flooded Housing Estate
19.1 Introduction
19.2 Experimental Set-Up
19.3 Numerical Study
19.4 Results
19.4.1 Aligned Configurations
19.4.2 Staggered Configurations
19.5 Conclusions
References
20 Benefit of Coupling 1D-2D Model Over an Urban Area to Assess Runoff During a Storm Event
20.1 Introduction
20.2 Material and Methods
20.2.1 Hydraulic Modelling Tools
20.2.2 Case Study
20.2.3 1D Stormwater Network
20.2.4 2D Surface Model
20.2.5 Rainfall Events
20.2.6 Simulations
20.3 Results and Discussion
20.3.1 Analysis of the Stormwater Network Overflows
20.4 Conclusions
References
21 Stream Rehabilitation Design in a Potentially Protected Forest Catchment in Singapore
21.1 Introduction
21.2 Materials and Methods
21.2.1 Study Site
21.2.2 Numerical Model
21.2.3 Model Domain and Data
21.2.4 Methodology
21.2.5 Scenario Definition for Climate Change Impact Study
21.3 Results and Discussions
21.3.1 MIKE SHE Results
21.3.2 Survey Results
21.3.3 Restoration Solutions and Conceptual Numerical Results
21.4 Conclusions
References
22 Applications of a Physics Based Distributed Integrated Hydrological Model in Flood Risk Management
22.1 Context
22.2 Study Area
22.2.1 The Brivet River
22.2.2 Ru d’Auvernau River
22.3 The Hydrological Model: MIKE SHE
22.3.1 Topography
22.3.2 Soils
22.3.3 Land Use
22.3.4 Rainfall Inputs
22.4 Calibration
22.5 Results
22.6 Conclusion
References
23 Determination and Application of Dynamic Rainfall Threshold for Flash Flood Warning
23.1 Introduction
23.2 Study Area and Data Sources
23.3 Methodology
23.3.1 Hydrological Model
23.3.2 Determination of Dynamic Rainfall Threshold
23.4 Results and Discussion
23.4.1 Model Setup and Calibration
23.4.2 Dynamic Rainfall Threshold Curves
23.4.3 Flash Flood Warning Based on Rainfall Thresholds
23.5 Conclusion
References
24 Optimized Reservoir Prior Release Operation for Flood Control Considering Operational Weekly Ensemble Hydrological Forecast
24.1 introduction
24.2 Target Reservoir
24.3 Methodology
24.3.1 Operational Weekly Ensemble Hydrological Prediction
24.3.2 Decision Method for Reservoir Prior Release Considering Ensemble Hydrological Prediction
24.4 Case Study
24.5 Conclusions
References
25 Geographical Cluster of Flash Flood Hazards in Jiangxi, China: A Spatial Analysis Perspective
25.1 Introduction
25.2 Study Area and Data
25.2.1 Study Area
25.2.2 Data
25.3 Method
25.3.1 Spatial Autocorrelation
25.3.2 Hot Spot Spatial Analysis
25.3.3 GeoDetector
25.4 Results and Discussion
25.4.1 Temporal Distribution of Flash Flood
25.4.2 Spatial Distribution of Flash Flood
25.4.3 Driving Force Detection of Flash Flood
25.5 Conclusion
References
26 Analysis of Extreme Precipitation During the Mediterranean Event Associated with the Alex Storm in The Alpes-Maritimes: Atmospheric Mechanisms and Resulting Rainfall
26.1 Introduction
26.2 Meteorological Data
26.2.1 Numerical Weather Prediction Model AROME of Météo-France
26.2.2 Surface Observation
26.2.3 Radar Observation
26.2.4 Fusion Products
26.2.5 QPE Reanalysis
26.3 Case Description
26.3.1 Atmospheric Mechanisms
26.3.2 Resulting Rainfall Observed
26.3.3 Human and Property Consequences
26.4 Performance of Different Operational Tools
26.4.1 Global Analysis
26.4.2 Temporal Analysis
26.4.3 Performance of Predictions Within Different Model Runs
26.4.4 Conclusion on Performance
26.5 Discussion and Conclusion
References
27 Are Hydrologic-Hydraulic Coupling Approaches Able to Reproduce Alex Flash-Flood Dynamics and Impacts on Southeastern French Headwaters?
27.1 Introduction
27.2 Data
27.2.1 Digital Elevation Models
27.2.2 Hydrometeorological Datasets
27.2.3 Damages Cartography
27.3 Method and Models
27.3.1 General Framework
27.3.2 Hydrologically Conditioning of Used DEM
27.3.3 Rainfall-Runoff Models
27.3.4 Hydraulic Model
27.3.5 Coupling Setups
27.4 Results
27.4.1 Precipitation Spatial and Temporal Variability
27.4.2 Streamflow Simulations
27.4.3 Flood Simulations
27.5 Conclusions
References
28 Improving the Efficiency of Flash Flood Forecasting and Warning System in Thailand
28.1 Introduction
28.2 Study Area
28.2.1 Northern Thailand
28.2.2 Northeastern Thailand
28.3 Data and Material
28.3.1 Physiographic Catchment Index
28.3.2 Satellite Rainfall (PERSIANN-CCS)
28.3.3 Predicted Rainfall (WRF-ROMS)
28.4 Methodology
28.4.1 Flash Flood Potential Index (FFPI)
28.4.2 Antecedent Moisture Content (AMC)
28.4.3 Predicted Rainfall (WRF-ROMS)
28.4.4 Evaluation of Rainfall Threshold
28.5 Results
28.6 Conclusions
References
29 Study on Forecasting and Alarming Model of Flash Flood Based on Machine Learning
29.1 Introduction
29.2 Methodology
29.2.1 Distributed Hydrological Model
29.2.2 Calibration of Model Parameters
29.2.3 Parameter Regionalization
29.2.4 Early Warning Model
29.3 Study Area and Data
29.4 Results and Discussion
29.5 Conclusions
References
30 Numerical Assessment of Sediment Supply Impacting Flash Flood Propagation in Mountainous Confluences
30.1 Introduction
30.2 Methods
30.2.1 Hydro-Morphological Model
30.2.2 Confluence Channel Configuration and Model Setting
30.3 Results and Discussion
30.3.1 Bed Morphology
30.3.2 Flow Stage and Velocity of Flash Floods
30.3.3 Impact of Sediment Supply on Flash Flood
30.3.4 Insights for Flash Flood Hazard Prevention and Protection Under Impact of Sediment Supply
30.4 Conclusions
References
31 Large Wood Transport-Related Flood Risks Analysis of Lourdes City Using Iber-Wood Model
31.1 Introduction
31.2 Material and Methods
31.2.1 Iber-Wood in a Nutshell
31.2.2 Iber-Wood Parameters
31.2.3 Setting Model Parameters for Large Wood Modelling
31.2.4 Modelling the Gave-de-Pau at Lourdes
31.3 Preliminary Results
31.3.1 Identification of Bridges Prone to Large Wood Obstructions
31.3.2 Large Wood-Related Head Losses
31.4 Discussion and Recommendations
31.5 Conclusion
References
32 A Study on Flood Inundation Mapping of Surma River Floodplain Under Extreme Flood Scenario
32.1 Introduction
32.2 Methodology
32.2.1 Study Area
32.2.2 Hydro-Meteorological Data
32.3 Model Setup
32.3.1 Gumbel Distribution
32.4 Results
32.5 Conclusions
References
33 A Framework for Evaluating Performance of Large-Scale Nature-Based Solutions to Reduce Hydro-Meteorological Risks and Enhance Co-benefits
33.1 Introduction
33.2 Background
33.2.1 Selection and Assessment of Measures to Reduce Hydro-Meteorological Risks
33.2.2 Monitoring and Evaluation
33.3 Define the Evaluation Framework
33.4 A Framework for Evaluating Performance of Large-Scale Nature-Based Solutions to Reduce Hydro-Meteorological Risks and Enhance Co-benefits
33.4.1 Identification of Indicators
33.4.2 Ex-ante Evaluation
33.4.3 Ex-post Evaluation
33.5 Conclusions
References
34 Managing Droughts in Northern Germany—The Reconect NBS Approach and Water Resources Model for Vier- Und Marschlande Area, Hamburg, Germany
34.1 Introduction
34.2 Towards Holistic Water Resources Modelling Focusing on Drought Management—The Reconect Approach
34.2.1 Conceptual Design of the Water Resources Management Model (WRMM)
34.2.2 System Analysis
34.2.3 Selection of Measures
34.2.4 Analysis of Results, Evaluation and Upscaling
34.3 Implementation and Results
34.3.1 Conceptual Design of the Water Resources Management Model (WRMM)
34.3.2 System Analysis
34.3.3 Selection of Measures
34.4 Conclusions and Outlook
References
35 Opportunities and Challenges of Natural-Based Solutions in Urban Areas—French Case Studies
35.1 Introduction
35.2 Case Studie Areas
35.2.1 Case Study Les Boucholeurs
35.2.2 Case Study Eco Vallee Nice
35.2.3 NBS Challenges and Opportunities
References
36 The 1915 Mud-Debris Flow at San Fruttuoso Di Camogli: Modeling the Collapse Effects in the Portofino Pilot Area of the H2020 Reconect Project
36.1 Introduction
36.2 Materials and Methods
36.2.1 General Settings
36.2.2 The 1915 Event
36.2.3 Methods and Data
36.3 Results
36.4 Discussion
36.5 Conclusions
References
37 Benefits of Green Infrastructure for Flood Mitigation in Small Rural Watersheds—Case Study of the Tamnava River in Serbia
37.1 Introduction
37.2 The Study Area and Flood Mitigation Scenarios
37.3 Micro-scale Flood Loss Model
37.3.1 Description of the Methodology
37.3.2 Asset Identification and Loss Assessment
37.3.3 Total Losses and Benefits from Flood Mitigation Scenario
37.4 Results
37.4.1 Model Validation for the 2014 Flood
37.4.2 Model Application for Design Floods and Different Flood Mitigation Scenarios
37.5 Conclusions
References
38 Modelling Nature-Based Solutions with Quasi-2D Model
38.1 Introduction
38.2 Methodology
38.2.1 Quasi-2D Model
38.2.2 Study Area
38.2.3 Potential Nature-Based Solutions
38.3 Results and Discussions
38.3.1 Model Validation
38.3.2 Effect of a Detention Pond
38.3.3 Other Possible Solutions
38.4 Conclusions
References
39 Bregana River Basin: Hydrodynamic Modeling and Analysis of NBS Suitability Within the Reconect Project
39.1 Introduction
39.1.1 The Location
39.1.2 Hazard History
39.1.3 Environmental/ecology
39.1.4 Measures for Flood Risk Management
39.1.5 What Have the Competent Institutions Been Doing in Recent years?
39.1.6 The Role of PRONING DHI in the Bregana Basin
39.2 Hydraulic Modeling of the Bregana River
39.2.1 One-Dimensional Q2D MIKE11 Model of the Bregana River
39.2.2 Hybrid 1D / 2D MIKE FLOOD Model of the Bregana River
39.2.3 Comparison of the Previous Two Models
39.3 Possibilities of NBS Application in the Bregana Basin Through the Reconnect Project
39.3.1 Analysis of Measures
References
Part III Advanced Modelling Solutions
40 Numerical Simulation of the Interaction Between the Jet and a Pelton Runner Under Low Head
40.1 Introduction
40.2 Test Case
40.3 Numerical Set Up
40.4 Results
40.5 Conclusions
References
41 Discretization Uncertainties of Flow and Fatigue Damage Simulations of a Reversible Francis Pump-Turbine at Off-Design Operation in Turbine Mode
41.1 Introduction
41.2 Methodology
41.2.1 Strategy for Discretization Uncertainty Evaluations
41.2.2 CFD Simulations
41.2.3 Structural Simulations
41.2.4 Damage Calculations
41.3 Results
41.3.1 CFD Simulation Results
41.3.2 FEA Results
41.4 Conclusions
References
42 Hybrid Modeling of the Massongex-Bex-Rhône Hydropower Plant on the Rhone River in Switzerland
42.1 Introduction
42.2 Methodology
42.2.1 Physical Model
42.2.2 Numerical Model
42.3 Results
42.3.1 Experimental Results
42.3.2 Numerical Results
42.4 Conclusions
References
43 Effect of the Variable Speed on the Hydraulic Behavior of the Caniçada Francis Turbine
43.1 Introduction
43.2 Methodology
43.2.1 Computational Domains and Meshes
43.2.2 Numerical Setup
43.2.3 Mesh Selection
43.2.4 Variable Speed Computations
43.3 Results
43.3.1 Part Load Computations at n11 = 59 rpm
43.3.2 Variable Speed Computations at Q/Qopt = 51%
43.4 Conclusions
References
44 Shape Optimization of Spillways Design Using a Gradient Based Algorithm
44.1 Introduction and Context
44.2 CFD-Based Shape Optimization
44.2.1 Optimization Problem Definition
44.2.2 Geometry Parametrization and Manipulation
44.2.3 CFD Model
44.2.4 Optimization Algorithm
44.3 Results
44.3.1 Sensitivity Analysis
44.3.2 Parametric Study
44.4 Perspectives and Conclusions
References
45 Challenges for Realtime DSS: Experience from Aquavar System
45.1 Introduction
45.2 The Aqauavar Decision Support System
45.2.1 Needs and Expectations
45.2.2 AquaVar Architecture
45.2.3 AquaVar Modelling System
45.2.4 AquaVar Orchestration
45.3 Computational Efficiency
45.3.1 CPU and GPU Processing
45.3.2 Computing Performance Tests
45.4 The Operational Architecture
45.5 Conclusion
References
46 Extraction of Filters Applicable to Flood Forecasting Model and Performance Evaluation by Information Criterion
46.1 Introduction
46.2 Filter Evaluation Conditions
46.2.1 Outline of the Storage Function Model Used for Water Level Prediction
46.2.2 Improvement of Filter and Its Basic Formula
46.3 Selection of Filters to be Evaluated
46.3.1 Selection of Kalman Filters
46.3.2 Selection of Particle Filters
46.4 Nwaic Evaluation of the Filter
46.4.1 The Objective Rivers
46.4.2 Prediction Conditions and Number of Particles
46.4.3 Performance Evaluation When Actual Rainfall is Used for Predicted Rainfall
46.5 Evaluation of the Filter Assuming the Predicted Rainfall
46.5.1 Setting the Size of the Error in the Predicted Rainfall
46.5.2 Setting the Probability Distribution of the Predicted Rainfall/Actual Rainfall Ratio
46.5.3 Estimating the Predicted Water Level Error Based on the Predicted Rainfall
46.5.4 Evaluation of the Significance of the Difference Between Various Filters
46.6 Conclusion
46.6.1 Performance Evaluation of the Filter by the Maximum Nash Coefficient
46.6.2 NWAIC Filter Performance Evaluation
46.6.3 Performance Evaluation of the Filter Considering the Predicted Rainfall Error
References
47 Three-Dimensional Sediment Transport Modeling of the Gironde Estuary
47.1 Introduction
47.2 Study Area
47.2.1 Main Feature of the Gironde Estuary
47.2.2 Available Data
47.3 Model Set Up
47.3.1 Main Features of the 3D Model
47.3.2 Accuracy of the Baseline Simulation
47.4 Sensitivity Analysis
47.4.1 Influence of the Bed Material Distribution
47.4.2 Influence of the Bed Load
47.4.3 Influence of the Fluid Mud on the Bed Roughness
47.4.4 Influence of the Bed Structure Initialization
47.5 Analysis of the Flow Pattern for Both Hydrological Conditions
47.5.1 Residual Currents and Stratification
47.5.2 Variation on the Sediment Transport and the Bed Surface Texture
47.6 Conclusions
Appendix
References
48 Calibration of 1D and 2D Fluvial Models with a Metamodel Based Optimization
48.1 Introduction
48.2 Methodology Involving a Metamodel
48.2.1 Design of Experiment (DOE)
48.2.2 Metamodel
48.2.3 Validation
48.2.4 Optimization
48.3 Case Study
48.3.1 Geographical Context
48.3.2 Hydraulic Models
48.3.3 Friction Zones and Strickler Coefficients Assumption
48.3.4 Water Lines
48.4 Descriptive Study
48.4.1 Correlation Matrix
48.4.2 Pair Plot
48.5 Construction and Validation of the Metamodel
48.5.1 Benchmark of Linear and Gaussian Process Regressions Inputs
48.5.2 Benchmark of Metamodel Methods for the Validation Step
48.5.3 Benchmark of DOE for the Validation Step
48.6 Results and Discussion for the Optimization Step
48.6.1 Influence of Metamodel Methods
48.6.2 Analysis of Optimization Results
48.7 Conclusion
References
49 Coupling Surface Grain-Size and Friction for Realistic 2D Modelling of Channel Dynamics on Massive Bedload Deposition
49.1 Introduction
49.2 Small Scale Model
49.2.1 Model Description
49.2.2 Qualitative Description of Small Scale Model Observations
49.2.3 Quantitative Analysis of Small Scale Model Observations
49.3 Numerical Model
49.3.1 Software
49.3.2 Mesh and Boundary Conditions
49.3.3 Hydraulics
49.3.4 Sediment Transport Formulation and Algorithms
49.4 Results
49.4.1 Qualitative Validation
49.4.2 Quantitative Validation
49.5 Discussion and Conclusion
References
50 Hydraulic Modelling Studies for the Rehabilitation of Waterways on the Congo River
50.1 Context
50.2 Hydrology
50.3 2D Hydraulic Modelling
50.3.1 Mesh
50.3.2 Boundary Conditions
50.3.3 Calibration
50.3.4 Exploitation
50.4 3D Hydraulic Modelling
50.4.1 Model Development
50.4.2 Exploitation
50.5 Trajectography of the Kandolo Pass
50.6 Conclusions
References
51 Study of Coastline Dynamics and Impact of a Hydraulic Structure in Menton, France
51.1 Introduction
51.2 Study Area and Methods
51.2.1 Study Area and Data
51.2.2 Extraction of a Coastline Position Marker and Calculation of Variation Rates
51.2.3 Morphodynamic Model Set up
51.3 Results and Discussions
51.3.1 Analysis of the Diachronic Evolution of Sector 2 Coastline from 2004 to 2017
51.3.2 Interaction Between Swells and Bathymetry: Wave Dissipation
51.3.3 Interaction Between Swells and Bathymetry: Submersion and Sediment Transport
51.4 Conclusions
References
52 Simulation of the Alex Storm Flash-Flood in the Vésubie Catchment (South Eastern France) Using Telemac-2D Hydraulic Code
52.1 Introduction
52.2 Studied Domain
52.2.1 The Vésubie Catchment
52.2.2 The Alex Flood Event
52.3 Data
52.3.1 DEM
52.3.2 Rainfall Inputs
52.4 Methods
52.4.1 Runoff Estimation
52.4.2 Modelling Tool
52.4.3 Model Set Up
52.5 Results and Discussion
52.5.1 Curve Number Effect
52.5.2 Effect of Mesh Resolution
52.5.3 Comparison with Basilisk’s Results
52.5.4 Flood Extent
52.6 Conclusion
References
53 Modelling Cyclonic Events in the Pacific
53.1 Context
53.2 Cyclonic Events
53.3 Modeling Softwares
53.4 Modelling Chain
53.4.1 Wind
53.4.2 Waves
53.5 Results
53.6 Conclusions
References
54 Merenptah: High Tide Level Forecasting Tool with Application to the Gironde Estuary
54.1 Introduction
54.2 Context Presentation
54.3 Material and Methods
54.4 Sensitivity of High Tides to Environmental Inputs
54.5 Linear Model for the High Tide at Bordeaux
54.6 Concluding Remarks
References
55 Operational Methodology for the Assessment of Typhoon Waves Characteristics. Application to Ninh Thuan Province, Vietnam
55.1 Introduction
55.2 Study Area
55.3 Material and Methods
55.3.1 Numerical Modelling
55.3.2 Materials
55.3.3 Model Set up
55.3.4 Application
55.4 Conclusions
References
56 Improving Water Levels Forecast in the Gironde Estuary Using Telemac2D and Data Assimilation by Infering Time-Dependent Boundary Conditions
56.1 Introduction
56.2 Hydrodynamic Model for the Gironde Estuary
56.2.1 Shallow Water Equations
56.2.2 Gironde Estuary Numerical Model
56.3 Data Assimilation Framework
56.3.1 Description of the Control Vector γ
56.3.2 EnKF-Γ-KLBC Equations
56.3.3 Time Cycling and Data Assimilation Windows
56.4 Validation with an Observing System Simulation Experiment (OSSE) Environment
56.4.1 Experimental Set-Up
56.4.2 Results
56.5 Conclusions and Perspectives
References
57 Implementation of a Hydrologic Model as an Element of the Litter-TEP Service—Marine Litter Tracking and Stranding Forecast—Or for the Understanding of the Coastal Patterns Change
57.1 Introduction
57.2 Hype Model
57.3 Model Implementation
57.3.1 The Liffey Watershed
57.3.2 Model Options
57.3.3 Input Data
57.3.4 Calibration Processes
57.3.5 Results
57.4 Validation
57.5 Areas of Improvements
57.6 Conclusions
References
58 How Strong Are Our Levees? Hydraulic Analysis Based on Polder2C’s Project in Situ Testing
58.1 The Hedwige and Prosper Polder: A Playground for Hydraulic Engineers
58.2 Theoretical Background
58.2.1 General Consideration
58.2.2 Energy Grade Line Equations
58.2.3 Manning Formula
58.2.4 Roughness of Vegetated Slope
58.3 Field Tests
58.3.1 Continuous overflow Tests
58.3.2 Test Scenarios
58.4 Overflow Models
58.4.1 Introduction to the Overflow Models
58.4.2 Model Settings and Input
58.5 Results
58.6 Conclusions
References
59 Further Enhancement of Satellite DEM Resolution and Accuracy Using Machine Learning and Remote Sensing Data
59.1 Introduction
59.2 Methodology
59.3 Proof of the Concept
59.4 Discussion
59.5 Conclusions
References
60 Investigating the Behaviour of Leaky Barriers with Flume Experiments and 3D Modelling
60.1 Introduction
60.2 Methodology
60.2.1 Recreating the Flume
60.2.2 Modelling the Multiphase Flow
60.2.3 Starting Stable, Ending Accurate
60.3 Results and Discussion
60.3.1 Comparison with Experimental Data
60.3.2 Visualising Flow Around the Barrier
60.3.3 Flow Adjacent to Walls
60.4 Conclusion
References
61 Underground Flow Section Modification Below the New M3 Flon Metro Station in Lausanne
61.1 Introduction
61.2 Background
61.2.1 Study Location
61.2.2 Theoretical Background
61.3 Methods
61.3.1 Numerical Method
61.3.2 Physical Model
61.4 Results
61.4.1 Model Validation
61.4.2 Water Surface Profiles
61.5 Discussion
61.5.1 Assessment of the Capacity Limit of the System
61.5.2 Accuracy
61.5.3 Limitations
61.5.4 Outlook
61.6 Conclusions
References
62 Numerical Simulation of the Hydraulic Behavior of Stepped Stairs in a Metro Station
62.1 Introduction
62.2 Method
62.2.1 Mathematical Model of Flow 3D
62.3 Results and Discussion
62.4 Conclusions
References
63 Computational Fluid Dynamic Wave Modelling: Sensitivity Analysis of the Loading on Offshore Structures
63.1 Introduction
63.2 Wave Generation and Propagation in a Numerical Channel
63.2.1 Generation
63.2.2 Propagation
63.3 Wave Loading on Structure
63.4 Bed Wave Shear Stress
63.5 Conclusions
References
64 Assessment of Smart Heating and Cooling System Based on Thermal Use of Shallow Aquifer
64.1 Introduction
64.2 The Energy Production Strategy
64.3 Modelling strategy
64.3.1 3D Model Conception and Extension
64.3.2 Groundwater Flow and Thermal Simulation
64.4 Simulation Protocole and Results
64.5 Conclusions
References
65 Numerical Simulations for Multipurpose Reservoirs for Alpine Irrigation
65.1 Introduction
65.2 Study Case
65.3 Method
65.4 Results
65.4.1 Current Infrastructures
65.4.2 Modified Infrastructures
65.5 Conclusion
References
66 Optimal Operation of Parallel Reservoirs System with Limited Storage Capacity for Flood Mitigation
66.1 Introduction
66.2 Methodology
66.3 Case Study: Vu Gia Thu Bon Reservoirs System
66.3.1 Multi-reservoir in Vu Gia Thu Bon Catchment
66.3.2 Objective Function
66.4 Application and Results
66.4.1 Boundary and Initial Conditions
66.4.2 Results
66.5 Conclusions
References
67 Sizing Flood Control Storage of Reservoirs System in the Vu Gia Thu Bon Catchment
67.1 Introduction
67.2 Methodology
67.2.1 Multi-objective Optimization Framework
67.2.2 Simulation Method
67.2.3 Optimization Model
67.3 Case Study: Vu Gia Thu Bon Reservoirs System
67.3.1 Multi-reservoir in Vu Gia Thu Bon Catchment
67.3.2 Conventional Operating Rules
67.3.3 Objective Function
67.4 Application and Results
References
68 Integrating Epanet and FIWARE for Development of Water Distribution System Digital Twins
68.1 Introduction
68.2 Models for Context Information Management
68.3 Connecting EPANET with Context Information
68.4 Application to a Case Study Network
68.5 Conclusions
References
69 Assessment of Spanish Rivers Current and Future Ecological Status Using Urban Wastewater Dilution Factor
69.1 Introduction
69.2 Material and Methods
69.2.1 European Wastewater and River Flow Datasets
69.2.2 Climate Change Data and Scenarios
69.2.3 Dilution Factor Assessment
69.2.4 Ecological Status or Potential and Dilution Factor Assessment
69.3 Results
69.3.1 Dilution Factor of the WWTPs Discharge into Rivers SWBs (Q1)
69.3.2 DF Uses as a Proxy Indicator of Ecological Status (Q2)
69.4 DF and Ecological Status on the Horizons 2011–2040 and 2041–2070 (Q3)
69.5 Conclusions
References
70 Changes of River Discharge and Temperature by Using Distributed Runoff Model with the Global Warming Experiments, Frequency Analysis of Drought and Flood
70.1 Introduction
70.2 Precipitation, Runoff and Water Temperature Model Overview
70.2.1 Distributed Runoff Model
70.2.2 Validation of Distributed Runoff Model
70.3 Prediction of Changes in Flow Conditions and Water Temperature Due to Global Warming
70.3.1 Experimental Design of d4PDF
70.3.2 Changes in Flow Conditions
70.3.3 Effect on Water Temperature
70.4 Conclusions
References
71 Dracar: An Estuarine Transfer Function to Predict Dissolved Pollutant Fluxes to the Sea. Application for Radionuclides
71.1 Introduction
71.2 Material and Methods
71.2.1 Field Study and Data
71.2.2 An Interface to Describe Estuarine Processes: DRACAR
71.2.3 Stratification Structure Along the Box
71.2.4 Box-Model Solution
71.2.5 Estuarine Flushing Time
71.3 Results
71.3.1 Stratification Structure
71.3.2 Box-Model Solution
71.3.3 Discussion on Rhone River Plume Reactivity Toward Radiocesium
71.4 Conclusion
References
72 Three-Dimensional Simulation of Bacterial Pollution in Nice Bay for Operational Application
72.1 Introduction
72.2 Method
72.2.1 Measurement Campaign
72.2.2 Hydraulic Model
72.3 Results and Discussion
72.3.1 Field Measurement Campaign
72.3.2 Results of the Model
72.4 Conclusion
References
73 Flood Analysis and Simulation Attempts of the Newly Proposed Capital City of Indonesia
73.1 Introduction
73.2 Materials
73.2.1 SRTM DEM
73.2.2 AW3D30 DEM
73.2.3 Sentinel 2 Multispectral Imagery
73.2.4 High-Resolution Surveyed DEM
73.3 Methodology
73.3.1 General Concept
73.3.2 Data Preparation
73.3.3 Artificial Neural Network Setup
73.4 Proof of Concepts
73.4.1 Assessment of Derived DEM
73.5 Application
73.5.1 DEM Derivation
73.5.2 Flood Maps
73.6 Summary and Conclusions
73.6.1 Development of DEM Improvement Scheme
73.6.2 Flood Mapping and Analysis
73.6.3 Outlook
References
74 Impacts of Climate Change on Water Availability for the Vésubie Catchment, France
74.1 Introduction
74.2 Methods
74.2.1 Study Area and Available Data
74.2.2 Climate Change Data
74.2.3 MIKE SHE Deterministic Hydrological Model
74.3 Results
74.3.1 Future Changes of Temperature and Precipitation
74.3.2 Future Changes of Water Availability
74.4 Conclusion
References
75 A Spatiotemporally-Mixed-Runoff-Model-Based Artificial Intelligence Parameter Regionalization Application in Henan Province of China
75.1 Introduction
75.2 Artificial Intelligence Parameter Regionalization Method
75.2.1 Generation of Regression Tree
75.2.2 Generation of the Classification Tree
75.2.3 The Role of Principal Component Analysis in CART Model
75.2.4 Evaluation Index of the Simulation Accuracy and Verification Method of Leave-One-Out Method
75.3 Modeling Tools and Research Areas
75.3.1 Research Areas
75.3.2 Modeling Tools
75.4 Results Analysis and Discussion
75.4.1 Calibration and Validation of Spatiotemporal Mixed Source Runoff Generation Model
75.4.2 Principal Component Analysis of Flood in Small Watersheds
75.4.3 Watershed Similarity Determination Based on Machine Learning
75.4.4 Simulation Verification of Leave-One-Out Method Parameter Transplantation
75.5 Conclusion
References
76 Prediction of Index Rainfall Using a Cubist Model: A Case Study of Cheliff Watershed (Algeria)
76.1 Introduction
76.2 Material and Methods
76.2.1 Study Area
76.2.2 Data Description
76.2.3 Methodology
76.3 Material and Methods
76.3.1 Results and Hyperparameters Tuning
76.3.2 Results of the Test Set
76.4 Conclusion
References
77 Assessment of Terrain Scenario Impacts on Hydrological Simulation with SWAT Model. Application to Lai Giang Catchment, Vietnam
77.1 Introduction
77.2 Methodology
77.2.1 Study Area
77.2.2 DEM Data Sets
77.2.3 Hydro-meteorological Data
77.2.4 Land-Use Land-Cover Map (LULC) and Soil Map
77.2.5 SWAT Model
77.3 Results and Discussion
77.3.1 Analysis of the Catchment Area
77.3.2 Model Calibration, Validation Using SWAT-CUP
77.3.3 Compare Simulation Results
77.4 Conclusions
References
78 Influence of Topography Resolution and Quality on Modeling Hydrological Processes in Paillon River Basin in the South of France
78.1 Introduction
78.2 Study Area and Methods
78.2.1 Study Area
78.2.2 DEM Selection and Cleaning
78.2.3 Data and Model Set Up
78.3 Results and Discussions
78.3.1 Selected DEM for Initial Testing and Validation of Hydrological Models
78.3.2 Improved DEM for Overland Flow in the Catchment
78.3.3 Testing and Validation of Hydrological Models
78.4 Conclusions
References
79 Water Europe: Hydroinformatics for Water Resources and Water Related Hazards Management in Europe
79.1 Introduction
79.2 The WaterEurope Project
79.2.1 The Objectives of WaterEurope
79.2.2 The Innovative Pedagogic Approach
79.2.3 Collaborative Engineering and Collaborative Engineering Platform
79.3 The Var Catchment
79.4 The Collaborative Engineering Environment
79.4.1 The Operational Architecture
79.4.2 The Online Courses
79.5 The Collaborative Experience
79.6 Conclusions
References
80 HydroEurope—WaterEurope: 20 years of Practice in Collaborative Engineering for Hydroinformatics
80.1 Introduction
80.2 The European Perspective
80.2.1 The European Vision for Water
80.2.2 The HydroEurope/WaterEurope Projects
80.3 The Innovative Pedagogic Approach
80.3.1 The Collaborative Engineering and Hydroinformatics
80.3.2 The Problem Oriented Project Based Learning Approach
80.4 The Study Case: The Var Catchment
80.4.1 The Var Catchement
80.4.2 The Reference Flood Events
80.5 The Collaborative Engineering Environment
80.5.1 The Operational Architecture
80.5.2 The Online Courses
80.5.3 The Remote Desktop Solution
80.5.4 The Online Classroom and Forum
80.6 The Collaborative Experience
80.6.1 The Online collaboration
80.6.2 The Face-to-Face Collaboration
80.7 Conclusions
References