Advanced Remote Sensing for Urban and Landscape Ecology

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book introduces the use of various remote sensing data such as microwave, hyperspectral and very high-resolution (VHR) satellite imagery; mapping techniques including pixel and object-based machine learning; and geostatistical modelling techniques including cellular automation, entropy and land fragmentation. Remote sensing plays a vital role in solving urban and environmental challenges at the landscape level. Globally, more than half of the urban population is facing severe environmental and social challenges, especially those relating to climate change, agricultural land encroachment, green infrastructure and environmental degradation, mobility due to rapid rural–urban transformation and anthropogenic interventions. Mapping and quantification of such threats at the landscape level are challenging for experts using traditional techniques; however, remote sensing technology provides diverse spatial data at a varying scale, volume and accessibility for mapping and modelling, and it also analyses challenges at urban and landscape levels.

Together, they address challenges at urban and landscape levels to support the Sustainable Development Goals (SDGs).


Author(s): Sk. Mustak, Dharmaveer Singh, Prashant Kumar Srivastava
Series: Advances in Geographical and Environmental Sciences
Publisher: Springer-IGU
Year: 2023

Language: English
Pages: 325
City: Istanbul

Preface
Contents
Editors and Contributors
1 Data and Urban Poverty: Detecting and Characterising Slums and Deprived Urban Areas in Low- and Middle-Income Countries
1.1 Introduction
1.2 Methodology
1.2.1 Operationalising IDEAMAPS Domains of Deprivation Framework Through Semi-automated SLUMAP Processes
1.2.2 Urban Deprivation Detection Using Open Software and Low-Cost Imagery at City Scale
1.2.3 Urban Deprivation Characterization: At Settlement-Scale
1.2.4 SLUMAP Web-Based Portal: Towards Dissemination That Reaches Out to Local Users
1.3 Results
1.3.1 Detecting Deprived Areas at City Scale
1.3.2 Intra- and Inter-urban Deprivation Characterisation Through Land Use and Land Cover Indicators
1.3.3 Intra-urban Deprivation Characterisation Through Morphology Indicators
1.3.4 SLUMAP Web-Based Data Portal
1.4 Discussion
1.4.1 The Importance of Open-Access Data that Deals with Data Ethics and Privacy
1.4.2 Departing from Binary Slum Versus Non-slum Maps Towards Characterising Living Conditions
1.4.3 Understanding Intra- and Inter-urban Deprivation Diversity in Support of Pro-poor Policies
1.5 Conclusion
References
2 Investigation of Ecological Sustainability Through the Landscape Approach of Geospatial Technology: Study from New Town Project in Eastern India
2.1 Introduction
2.1.1 Background of the Landscape Dynamics in the Study Area
2.2 Database and Methodology
2.2.1 Data Consideration
2.2.2 Extraction of Land Use Land Cover Features in Change Dynamics of Urban Environment
2.2.3 Landscape Metrics to Represent Different Aspects of Landscape Configuration in Ecological Sustainability
2.2.4 Application of Fuzzy Membership Functions for Normalization of Landscape Metric Rasters
2.2.5 Application of Analytical Hierarchy Process (AHP) for Determining Individual Land Use-Based and Composite Land Use-Based Ecological Sustainability
2.2.6 Validation of the Proposed LUCESI Model
2.3 Results and Analysis
2.3.1 Spatio-temporal Dynamics of Land Use and Land Cover in the NTR Region
2.3.2 Spatio-temporal Distribution of Different Facets of Landscape in Ecological Sustainability
2.3.3 Spatio-temporal Distribution of Individual Land Use-Based Ecological Sustainability and Composite Land Use-Based Ecological Sustainability
2.3.4 Measurement of Association Between LUCESI and NDVI
2.4 Discussion
2.5 Conclusion
References
3 Advanced Remote Sensing for Sustainable Decent Housing for the Economically Challenged Urban Households
3.1 Introduction
3.2 Background
3.2.1 Attributes to Adequate Housing
3.2.2 Economically Challenged Urban Households
3.2.3 Percentage of Urban Population Living in the Economically Challenged Urban Areas
3.2.4 Spatial Characteristics for Economically Challenged Urban Areas
3.2.5 Remote Sensing for Economically Challenged Urban Areas
3.2.6 Advanced Remote Sensing Techniques for Mapping Economically Challenged Urban Areas
3.2.7 Approaches to Information Extraction on Economically Challenged Urban Areas
3.3 Study Area
3.4 Materials and Methods
3.4.1 Conceptual Framework for Advanced Remote Sensing for Economically Challenged Urban Areas
3.4.2 Datasets
3.4.3 Methods
3.5 Results and Discussions
3.6 Conclusions and Recommendations
References
4 Impact of Uncontrolled Tourism Development on Landscape Ecology of Purba Medinipur Coastal Region, West Bengal: A 4-C Framework and SWOC Analysis
4.1 Introduction
4.2 Background
4.3 Study Area
4.4 Materials and Methods
4.5 Result and Discussion
4.5.1 Changing Population Scenario
4.5.2 Changing LULC Scenario Due to Tourism in the Study Area
4.5.3 Major Causes for Tourism Development and Tourist Flow
4.5.4 Roles of Tourism for Landscape Transformation in the Study Area
4.5.5 Problem and Management Scenario for Tourism in Study Area
4.5.6 SWOC Analysis (Strength-Weakness-Opportunity-Challenges)
4.5.7 Essential Dimensions for Smart Tourism and Challenges in the Study Area
4.5.8 Main Challenges that Tourist Destinations Faced On
4.5.9 Ten Steps on the Way Forward Against Tourism Cum Urban Sprawling
4.6 Conclusion
References
5 Impact of Urban Heat Island: A Local-Level Urban Climate Phenomenon on Urban Ecology and Human Health
5.1 Introduction
5.2 Classification of UHI
5.3 Factors Contributing to Urban Heat Island Formation
5.4 Effects of UHI on Urban Ecology and Human Health
5.4.1 Urban Ecology
5.4.2 Human Health
5.5 Case Study
5.5.1 Background of Study
5.5.2 Materials and Methods
5.5.3 Results and Discussion
5.5.4 Conclusion and Recommendations
5.6 Recommendations
5.7 Conclusions
References
6 Identification of Environmental Epidemiology Through Advanced Remote Sensing Based on NDVI
6.1 Introduction
6.2 NDVI
6.3 Acceptance of Use of NDVI Globally
6.4 Case Study
6.4.1 Study Area
6.4.2 Methodology of Assessment
6.4.3 Result and Discussion
6.5 Conclusion
References
7 Assessment of Land Utilization Pattern and Their Relationship with Surface Temperature and Vegetation in Sikkim, India
7.1 Introduction
7.2 Study Area Description
7.3 Methodology
7.3.1 Data Sets Used
7.3.2 Land Use/Cover Classification and Accuracy Assessment
7.3.3 NDVI Computation
7.3.4 LST Computation
7.3.5 Correlation Analysis
7.4 Results and Discussion
7.4.1 Accuracy Assessment
7.4.2 LULC Change Dynamics
7.4.3 LST and NDVI Dynamics (1995–2005–2021)
7.4.4 Correlation Between LST Versus NDVI
7.5 Conclusion
References
8 Monitoring Land Use and Land Cover Change Over Bhiwani District Using Google Earth Engine
8.1 Introduction
8.1.1 Background
8.2 Study Area
8.3 Materials and Methods
8.4 Results and Discussion
8.5 Conclusion and Recommendation
References
9 Image and Perception of Royal Heritage and Eco-space of the Medium Towns in India: Reflection from Burdwan Royal Heritage Site
9.1 Introduction
9.2 Background of the Study
9.3 Study Area and its Rationale
9.4 Materials and Methods
9.4.1 Questionnaire Design and Sampling
9.4.2 Socioeconomic Profile of the Respondents
9.4.3 Methodology Adopted
9.5 Results and Discussions
9.5.1 Narrative Analysis
9.5.2 Exploratory Factor Analysis
9.5.3 Factor Loadings and Reliability Statistics
9.6 Conclusion and Recommendations
References
10 Governance and Floodplain Extent Changes of Yamuna River Floodplain in Megacity Delhi
10.1 Introduction
10.2 Statement of Problem
10.3 Study Area
10.4 Relevance of Floodplain in Megacity of Delhi
10.5 Literature Review
10.6 Data Sources
10.6.1 Floodplain Extent Changes
10.6.2 Governance/Planning
10.7 Analysis/Discussion
10.7.1 Floodplain Extent Changes
10.7.2 Governance
10.8 Conclusion
References
11 Assessing Urban Compactness Using Machine Learning and Earth Observation Datasets: A Case Study of Kolkata City
11.1 Introduction
11.2 Methodology
11.2.1 Study Area
11.2.2 Datasets
11.2.3 Methods
11.3 Results and Discussion
11.3.1 Land Use and Land Cover
11.3.2 Spatial Metrices to Assess Urban Compactness
11.4 Conclusions
References
12 Analysis of Ecological Vulnerability Behind the Land Conversion from Agriculture to Aquaculture of Purba Medinipur District in West Bengal, India
12.1 Introduction
12.2 Background
12.3 Study Area
12.4 Materials and Methods
12.4.1 Change Detection of Land Use
12.4.2 Image Processing
12.4.3 Soil Sample Collection
12.4.4 Water Sample Collection
12.4.5 Statistical Analysis
12.4.6 Perception Analysis
12.5 Result and Discussion
12.5.1 Ecological Impact Analysis
12.5.2 Change Detection of LULC
12.5.3 Soil Quality Assessment
12.5.4 Assessment of Water Quality
12.5.5 Loss of Bio-diversity
12.5.6 Ecological Cost Benefit (EECB) Analysis
12.6 Recommendations of Road Map for the Development and Sustainable Coping Strategies
12.7 Conclusion
References
13 Environmental Change Analysis Using Remote Sensing and GIS: A Study of Upper Baitarani Basin, Odisha
13.1 Introduction
13.2 Background
13.3 Study Area
13.4 Materials and Methods
13.4.1 Data Collection
13.4.2 Method
13.5 Result and Discussion
13.5.1 Land Use/Landcover
13.5.2 Normalized Different Vegetation Index (NDVI)
13.6 Conclusion and Recommendation
References
14 Mapping Urban Footprint Using Machine Learning and Public Domain Datasets
14.1 Introduction
14.2 Study Area
14.3 Datasets and Methodology
14.3.1 Remote Sensing Data
14.3.2 Socio-economic Data
14.3.3 Methods
14.4 Result and Discussion
14.4.1 Land Use and Land Cover (LULC)
14.4.2 Training and Test Sample
14.4.3 Land Use and Land Cover Using Random Forest
14.4.4 Land Use and Land Cover Using SVM-Linear
14.4.5 Land Use and Land Cover Using SVM-RBF
14.4.6 Built-Up Classification
14.4.7 Validation
14.5 Conclusion
References