Advanced Plasma Technology

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

A panel of internationally renowned scientists discuss the latest results in plasma technology. This volume has been compiled with both a didactic approach and an overview of the newest achievements for industrial applications. It is divided into two main sections. One is focused on fundamental technology, including plasma production and control, high-pressure discharges, modeling and simulation, diagnostics, dust control, and etching. The section on application technology covers polymer treatments, silicon solar cell, coating and spray, biomaterials, sterilization and waste treatment, plasma propulsion, plasma display panels, and anti-corrosion coatings. The result is an indispensable work for physicists, chemists and engineers involved in the field of plasma technology.

Author(s): Riccardo d'Agostino, Pietro Favia, Yoshinobu Kawai, Hideo Ikegami, Noriyoshi Sato, Farzaneh Are
Edition: 1
Publisher: Wiley-VCH
Year: 2008

Language: English
Pages: 482
Tags: Физика;Физика плазмы;

Advanced Plasma Technology......Page 4
Contents......Page 8
Preface......Page 18
List of Contributors......Page 20
1 Basic Approaches to Plasma Production and Control......Page 26
1.1.1 Under Low Gas Pressure (<0.1 torr)......Page 27
1.1.2 Under Medium Gas Pressure (0.1–10 torr)......Page 29
1.1.3 Under High (Atmospheric) Gas Pressure (>10 torr)......Page 31
1.2.1 Electron-Temperature Control......Page 32
1.2.2 Ion-Energy Control......Page 35
1.3 Dust Collection and Removal......Page 36
References......Page 40
2.1 Introduction......Page 42
2.2.1 Principle......Page 43
2.2.2 Transformer Model......Page 44
2.2.3.1 Matching......Page 45
2.2.3.3 Standing Wave Effects......Page 47
2.3.1 Substrate Shape......Page 48
2.3.1.2 Complex Three-Dimensional Shapes......Page 49
2.3.1.3 Large Area Treatment......Page 51
2.4 Conclusions......Page 56
References......Page 57
3.1 Introduction......Page 60
3.2.1 Capacitively Coupled O(2)/Ar Plasmas......Page 62
3.2.1.1 Gas Composition......Page 63
3.2.1.2 Pressure Effect in Ar/O(2) Plasmas......Page 66
3.2.2.1 Description of 3D Charge-up Simulations......Page 67
3.2.2.2 Effects of Secondary Electron Emission......Page 69
3.2.2.3 Negative Ion Extraction......Page 70
3.3 Fluid Simulations......Page 72
3.3.1 Capacitively Coupled Discharges......Page 73
3.3.2 Large Area Plasma Source......Page 74
3.4 Summary......Page 76
References......Page 77
4.1 Introduction......Page 80
4.2 Experimental......Page 81
4.3 Model Description......Page 82
4.4 Results and Discussion......Page 85
4.4.1 Electrical Properties......Page 86
4.4.2 Gas-Phase Chemistry......Page 91
4.4.3 Plasma–Surface Interactions......Page 96
4.5 Conclusions......Page 97
References......Page 98
5 Three-Dimensional Modeling of Thermal Plasmas (RF and Transferred Arc) for the Design of Sources and Industrial Processes......Page 100
5.1 Introduction......Page 101
5.2.1.1 Modeling Assumptions......Page 102
5.2.1.2 Governing Equations of the Continuum Phase......Page 103
5.2.1.3 Governing Equations of the Discrete Phase......Page 104
5.2.1.4 Computational Domain and Boundary Conditions......Page 106
5.2.2.1 High-Definition Numerical Simulation of Industrial ICPTs......Page 107
5.2.2.2 Numerical Simulation of the Trajectories and Thermal Histories of Powders Injected in Industrial ICPTs......Page 109
5.3.1.1 Modeling Assumptions......Page 110
5.3.1.2 Governing Equations......Page 111
5.3.1.3 Computational Domain and Boundary Conditions......Page 112
5.3.2.2 The Twin Torch......Page 114
5.3.2.3 The Cutting Torch......Page 119
References......Page 120
6.2 Capacitively Coupled Plasmas......Page 124
6.2.1 Dual-Frequency CCPs......Page 125
6.3.1 General Description......Page 128
6.3.2 Anomalous Skin Depth......Page 131
6.3.3 Magnetized ICPs......Page 132
6.4.1 General Description......Page 134
6.4.2 Unusual Features......Page 135
References......Page 139
7.1 Introduction......Page 142
7.3.1 Thomson–Rayleigh and Raman Scattering......Page 143
7.3.2 Laser-Induced Fluorescence......Page 146
7.3.3 Absorption Techniques......Page 147
7.3.4 Surface Diagnostics......Page 151
7.4.1 Thomson–Rayleigh Scattering and Raman Scattering......Page 152
7.4.2 Laser-Induced Fluorescence......Page 153
7.4.3 Absorption Spectroscopy......Page 155
7.4.4 Surface Diagnostics......Page 158
References......Page 159
8.1 Introduction......Page 162
8.2.2 Functionalization (Grafting) Reactions......Page 164
8.2.3 Crosslinking Reactions......Page 165
8.2.4.3 Plasma Cleaning/Etching Effect......Page 167
8.3 Surface Treatment of Polymers in a Low-Frequency, Low-Pressure Reactor With Asymmetrical Configuration of Electrodes (ACE)......Page 170
8.3.1 Surface Functionalization......Page 172
8.3.2 Ablation Effect of an Ammonia Plasma During Grafting of Nitrogen Groups......Page 173
8.3.3.1 Introduction......Page 176
8.3.3.2 Contact Angle Titration Method......Page 177
8.3.4 Aging of Plasma-Treated Surfaces......Page 180
8.3.4.1 Aging of Ammonia Plasma-Treated PP......Page 181
8.3.4.2 Stability of PP Treated in Plasmas of Mixtures of He + NH(3) for Improved Adhesion to Aluminum......Page 182
8.4 Plasma Polymerization......Page 183
8.4.1 Influence of the Chemical Composition of the Substrate on the Plasma Polymerization of a Mixture of CF(4) + H(2)......Page 185
8.4.2 Plasma Polymerization of Acrylic Acid......Page 190
8.5 Conclusions......Page 194
References......Page 195
9.1 Deposition of Fluorocarbon Films by Continuous Discharges......Page 200
9.1.1 Active Species in Fluorocarbon Plasmas......Page 201
9.1.2 Effect of Ion Bombardment......Page 203
9.1.3 The Activated Growth Model......Page 204
9.2 Afterglow Deposition of Fluorocarbon Films......Page 206
9.3 Deposition of Fluorocarbon Films by Modulated Glow Discharges......Page 208
9.4 Deposition of Nanostructured Thin Films from Tetrafluoroethylene Glow Discharges......Page 210
References......Page 218
10.1 Introduction......Page 222
10.2 Dissociation Reaction Processes in SiH(4) and SiH(4)/H(2) Plasmas......Page 223
10.3.1 Growth of a-Si:H......Page 224
10.3.2 Growth of μc-Si:H......Page 225
10.3.2.1 Nucleus Formation Process......Page 226
10.4.1 Growth of a-Si:H and μc-Si:H with SiH(3) (H) Radicals......Page 228
10.4.2 Contribution of Short-Lifetime Species......Page 229
10.5 Solar Cell Applications......Page 231
10.6.1 Control of Photoinduced Degradation in a-Si:H......Page 232
10.6.2 High-Rate Growth of Device-Grade μc-Si:H......Page 233
References......Page 235
11.1 Introduction......Page 236
11.2 Characteristics of VHF H(2) Plasma......Page 237
11.3 Characteristics of VHF SiH(4) Plasma......Page 239
11.4 Characteristics of Large-Area VHF H(2) Plasma......Page 244
11.5 Short-Gap VHF Discharge H(2) Plasma......Page 247
References......Page 251
12.1 Introduction......Page 252
12.2.1 Precursor for Cluster Growth Initiation......Page 253
12.2.2 Cluster Nucleation Phase......Page 255
12.2.3 Effects of Gas Flow on Cluster Growth......Page 256
12.2.4 Effects of Gas Temperature Gradient on Cluster Growth......Page 257
12.2.5 Effects of H(2) Dilution on Cluster Growth......Page 258
12.2.6 Effects of Discharge Modulation on Cluster Growth......Page 259
12.3 Cluster Growth Kinetics in SiH(4) HFCCP......Page 260
12.4 Growth Control of Clusters......Page 262
12.5 Application of Cluster Growth Control to High-Stability a-Si:H Film Deposition......Page 263
References......Page 266
13.1 Introduction: Micro and Nano, a Good Point of View in Biomedicine......Page 268
13.2 Micro- and Nanofeatures Modulate Biointeractions In Vivo and In Vitro......Page 271
13.3.1 Photolithography: The Role of Photolithographic Masks......Page 274
13.3.1.1 Role of Plasma Processes in Photolithography......Page 278
13.3.2.2 Role of Plasma Processes in Soft Lithography......Page 280
13.3.3 Plasma-Assisted Micropatterning: The Role of Physical Masks......Page 281
13.3.3.1 Micropatterning......Page 282
13.3.3.2 Nanopatterning......Page 285
13.3.4.1 Plasma Polymerization and Patterning of "Smart" Materials......Page 287
13.3.4.2 Deposition of Micro- and Nanostructured Coatings......Page 288
References......Page 289
14 Chemical Immobilization of Biomolecules on Plasma-Modified Substrates for Biomedical Applications......Page 294
14.1 Introduction......Page 295
14.2.1 Immobilization of PEO Chains (Unfouling Surfaces)......Page 299
14.2.2 Immobilization of Polysaccharides......Page 300
14.2.3 Immobilization of Proteins and Peptides......Page 301
14.2.3.1 Immobilization of Collagen......Page 302
14.2.3.2 Immobilization of Peptides......Page 304
14.2.4 Immobilization of Enzymes......Page 305
14.2.5 Immobilization of Carbohydrates......Page 306
14.3 Conclusions......Page 307
14.4 List of Abbreviations......Page 308
References......Page 309
15.1 Introduction......Page 312
15.2 Surface Modification Methods: Plasma Processes and Biomolecule Immobilization......Page 314
15.3 In Vitro Cell Culture Tests of Artificial Surfaces......Page 315
15.4.1 Viability Assays......Page 317
15.4.2 Metabolic Assays......Page 318
15.5 Analysis of Cell Adhesion......Page 319
15.6 Analysis of Cell Functions......Page 323
References......Page 324
16.1 Introduction......Page 326
16.2 Experiments......Page 328
16.3 Plasma Characteristics......Page 332
16.4 Bacterial Inactivation......Page 336
16.5 Cell and Tissue Treatment......Page 339
References......Page 342
17.1 Introduction......Page 344
17.1.1.1 Current Cleaning and Sterilization Processes......Page 345
17.2 Bacterial Spore Sterilization......Page 347
17.4 Protein Removal......Page 349
17.5.1 Experimental Setup......Page 350
17.5.3 Pyrogen Samples Detection......Page 351
17.6.1 Sterilization......Page 352
17.6.2 Depyrogenation......Page 354
17.6.3 Protein Removal......Page 356
17.7.1 Plasma Sterilization......Page 357
17.8 Conclusions......Page 363
References......Page 364
18.2 Development of Silica Coating Methods for Powdered Organic and Inorganic Pigments with Atmospheric Pressure Glow Plasma......Page 366
18.2.1 Experimental......Page 367
18.2.2 Results and Discussion......Page 368
18.2.3 Conclusion......Page 372
18.3.1 Experimental......Page 373
18.3.2.1 XPS Analysis......Page 374
18.3.2.2 TEM Analysis of Powder......Page 375
18.3.2.3 GC/MS Spectrum of the Vapor from UV-Irradiated Squalene Oil That Mixed With the Powders......Page 376
References......Page 377
19.1 Introduction......Page 378
19.2.1 Filamentary and Glow Dielectric Barrier Discharges......Page 379
19.2.2 Electrode Configurations and Gas Injection Systems......Page 381
19.2.3 Hydrocarbon Thin Film Deposition......Page 382
19.2.4 Fluorocarbon Thin Film Deposition......Page 384
19.3.1 Apparatus and Diagnostics......Page 385
19.3.2 Deposition of Hydrocarbon Films by Means of He–C(2)H(4)GDBDs......Page 386
19.3.3 Deposition of Fluorocarbon Films by Means of He–C(3)F(6) and He–C(3)F(8)–H(2)GDBDs......Page 389
19.4 Conclusion......Page 391
References......Page 392
20.1 Introduction......Page 396
20.2 Why Atmospheric Pressure Non-thermal Plasmas Are Attractive......Page 397
20.4 Limits of Similarity Law of Gas Discharge......Page 398
20.5 Reduction of Gas Temperature......Page 399
20.6 Examples of Realization of the Above Discussion......Page 400
20.8 Summery of Evidence To Date to Obtain Uniform DBDs......Page 401
20.10 Factors to be Considered to Realize Uniformity of DBD Plasma......Page 402
20.11 Remote Plasmas......Page 403
20.12 Conclusion......Page 404
References......Page 405
21.1 Introduction......Page 406
21.2.1 Panel Structure......Page 408
21.2.2 Driving Technologies......Page 412
21.3.1 Analysis of Discharge in PDPs......Page 413
21.3.2 High Luminance and High Luminous Efficiency......Page 414
21.3.3 ALIS Structure......Page 415
References......Page 416
22.1 Introduction......Page 418
22.2 PDP Operation......Page 419
22.3 PDP Plasma Structure......Page 420
22.4 Plasma Density and Electron Temperature......Page 422
References......Page 424
23.2 Key Elements in Thermal Plasma Spray Technology......Page 426
23.3 Thermal Plasma Spraying for Coating Technologies......Page 427
23.3.1 Plasma Powder Spraying......Page 428
23.3.2 Plasma Spray CVD......Page 431
23.3.4 Thermal Barrier Coatings......Page 432
23.4.1 Thermal Plasma Spheroidization......Page 439
23.4.3 Plasma Spray PVD......Page 440
23.5 Thermal Plasma Spraying for Waste Treatments......Page 441
23.6 Concluding Remarks and Prospects......Page 442
References......Page 443
24.2 Characteristics of Electrohydraulic Discharge Systems......Page 446
24.3 Treatment Mechanisms Generated by Electrohydraulic Discharge......Page 447
24.4 Treatment of Chemical Contaminants by Electrohydraulic Discharge......Page 449
24.5 Disinfection of Pathogenic Contaminants by PAED......Page 454
24.6 Municipal Sludge Treatment......Page 455
References......Page 457
25 Development and Physics Issues of an Advanced Space Propulsion......Page 460
25.1 Introduction......Page 461
25.2 Performance of Rocket Propulsion Systems......Page 462
25.3.1 Experimental Apparatus and Diagnostics......Page 465
25.3.2 Improvement of an MPDA Plasma Using a Magnetic Laval Nozzle......Page 467
25.3.3 RF Heating of a High Mach Number Plasma Flow......Page 469
25.4 Summary......Page 472
References......Page 473
Index......Page 474