Advanced Number Theory

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

From 1962, this is a detailed account of quadratic number fields, and makes a fair introduction to the theory of number fields of any degree. Ideal theory (restricted to the quadratic case) is well covered in plenty of detail. Gauss's classic theory of binary quadratic forms is also included.

Cohn is clearly quite keen on the subject, and is not just writing a textbook on some arbitrary topic for which he thinks there might be a market. And he has no fear of including pedagogical remarks in a textbook. The English is a bit awkward in places, but that is a minor thing.

The basics about characters and Dirichlet L-series are developed, but only to the extent needed to give Dirichlet's original proof of his theorem on arithmetic progressions. That proof, unlike later ones, uses Dirichlet's class number formula for quadratic fields, and is worth a look.

There is a lengthy but now dated bibliography.

An unusual feature is a table (from Sommer's 1911 book) describing the structure of Z[sqrt(n)] for all nonsquare n from -99 to 99.

Author(s): Harvey Cohn
Edition: Trade Paperback Republication
Publisher: Dover Publications
Year: 1980

Language: English
Pages: 283
City: New York