Advanced Nanomaterials

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

In this first comprehensive compilation of review chapters on this hot topic, more than 30 experts from around the world provide in-depth chapters on their specific areas of expertise, covering such essential topics as:Block Copolymer Systems, Nanofibers and NanotubesHelical Polymer-Based Supramolecular FilmsSynthesis of Inorganic NanotubesGold Nanoparticles and Carbon NanotubesRecent Advances in Metal Nanoparticle-Attached ElectrodesOxidation Catalysis by Nanoscale Gold, Silver, and CopperConcepts in Self-AssemblyNanocompositesAmphiphilic Poly(Oxyalkylene)-AminesMesoporous AluminaNanoceramics for Medical ApplicationsEcological Toxicology of Engineered Carbon NanoparticlesMolecular ImprintingNear-Field Raman Imaging of Nanostructures and DevicesFullerene-Rich NanostructuresInteractions of Carbon Nanotubes with BiomoleculesNanoparticle-Cored Dendrimers and Hyperbranched PolymersNanostructured Organogels via Molecular Self-AssemblyStructural DNA NanotechnologyWith its coverage of all such important areas as self-assembly, polymeric materials, bionanomaterials, nanotubes, photonic and environmental aspects, this is an essential reference for materials scientists, engineers, chemists, physicists and biologists wishing to gain an in-depth knowledge of all the disciplines involved.

Author(s): Geckeler K.E., Nishide H. (eds.)
Publisher: Wiley
Year: 2010

Language: English
Pages: 958
Tags: Специальные дисциплины;Наноматериалы и нанотехнологии;Наноматериаловедение;

Volume 1......Page 5
Contents......Page 7
Preface......Page 17
List of Contributors......Page 19
1.1.1 Introduction......Page 27
1.1.2 Self-Assembly of Block Copolymers......Page 29
1.1.3 Triblock Copolymers......Page 30
1.1.4 Rod–Coil Block Copolymers......Page 33
1.1.5 Micelle Formation......Page 34
1.1.6 Synthesis of Block Copolymers Using Living Polymerization Techniques......Page 35
1.1.6.1 Anionic Polymerization......Page 36
1.1.6.2 Stable Free Radical Polymerizations......Page 37
1.1.6.4 Atom Transfer Radical Polymerization......Page 38
1.1.6.6 Group Transfer Polymerization......Page 39
1.1.7.2 Polymer-Analogous Reactions......Page 40
1.2.1 Introduction to Lithography......Page 41
1.2.2 Block Copolymers as Nanolithographic Templates......Page 43
1.2.2.1 Creation of Nanoporous Block Copolymer Templates......Page 46
1.2.3 Multilevel Resist Strategies Using Block Copolymers......Page 55
1.3.1 Structure Direction Using Block Copolymer Scaffolds......Page 60
1.3.2 Nanopore Size Tunability......Page 62
1.3.3 Functionalized Nanoporous Surfaces......Page 64
1.4 Photo-Crosslinkable Nano-Objects......Page 67
1.5.1 Polymer–Metal Solubility......Page 70
1.5.2 Cluster Nucleation and Growth......Page 72
1.5.3 Block Copolymer Micelle Nanolithography......Page 73
1.6.1 Low-Energy Surfaces Using Fluorinated Block Copolymers......Page 74
1.6.2 Patterning Surface Energies......Page 75
1.6.3 Photoswitchable Surface Energies Using Block Copolymers Containing Azobenzene......Page 77
1.6.5 Azobenzene - Containing Block Copolymers as Holographic Materials......Page 78
1.7 Summary and Outlook......Page 80
References......Page 86
2.1 Introduction......Page 93
2.2.1 Nanofiber Preparation......Page 95
2.2.2 Nanotube Preparation......Page 98
2.3 Solution Properties......Page 100
2.4.1 Backbone Modification......Page 107
2.4.2 End Functionalization......Page 111
2.5 Concluding Remarks......Page 113
References......Page 114
3.1 Introduction......Page 117
3.2 Smart Nanoassemblies for Drug and Gene Delivery......Page 118
3.3.1.1 Drug Delivery......Page 119
3.3.1.2 Gene Delivery......Page 122
3.3.2 Oxidation- and Reduction-Sensitive Polymeric Nanoassemblies......Page 125
3.3.3 Other Endogenous Triggers......Page 127
3.4.1 Temperature......Page 128
3.4.2 Light......Page 131
3.4.3 Ultrasound......Page 133
3.5 Future Perspectives......Page 134
References......Page 135
4.1.1 Motivation......Page 137
4.1.2 Organization of the Chapter......Page 138
4.2 How to Help Phase Separation......Page 139
4.3 Orientation by External Fields......Page 142
4.3.1 Mechanical Flow Fields......Page 143
4.3.2 Electric and Magnetic Fields......Page 144
4.3.3 Solvent Evaporation and Thermal Gradient......Page 148
4.4 Templated Self-Assembly on Nanopatterned Surfaces......Page 149
4.5.1 Preferential Wetting and Homogeneous Surface Interactions......Page 152
4.5.2 Epitaxy......Page 154
4.5.3 Directional Crystallization......Page 156
4.5.4 Graphoepitaxy and Other Confining Geometries......Page 161
4.5.5 Combination of Directional Crystallization and Graphoepitaxy......Page 164
4.5.6 Combination of Epitaxy and Directional Crystallization......Page 166
4.6 Summary and Outlook......Page 175
References......Page 176
5.1 Introduction......Page 185
5.2 Helical Polymer-Based 1-D and 2-D Architectures......Page 187
5.2.1.1 Direct Visualization of 1-D Rod, Semi-Circle and Circle Structures by AFM......Page 188
5.2.1.2 Driving Force for the Formation of 1-D Architectures......Page 191
5.2.2.1 Direct Visualization of a Single Polymer Chain......Page 193
5.2.2.2 Formation of Superhelical Assemblies by Homochiral Intermolecular Interactions......Page 195
5.2.3 Formation of 2-D Crystallization of Poly(b-L-Glutamates) on Surfaces......Page 198
5.2.3.1 Direct Visualization of 2-D Self-Organized Array by AFM......Page 199
5.2.3.2 Orientation in 2-D Self-Organized Array......Page 200
5.2.3.4 Comparison of Structures between a 2-D Self-Organized Array and 3-D Bulk Phase......Page 201
5.2.4 Summary of Helical Polymer-Based 1-D and 2-D Architectures......Page 202
5.3 Helical Polymer-Based Functional Films......Page 203
5.3.1.1 Memory with Re-Writable Mode and Inversion “-1” and “+1” Switch......Page 204
5.3.1.3 On-Off “0” and “+1” Switch Based on Helix–Coil Transition......Page 208
5.3.2 Chiroptical Transfer and Amplification in Binary Helical Polysilane Films......Page 211
5.3.3 Summary of Helical Polymer-Based Functional Films......Page 214
Acknowledgments......Page 215
References......Page 216
6.1 Introduction......Page 221
6.3 Nanotubes of Metals and other Elemental Materials......Page 222
6.4 Metal Chalcogenide Nanotubes......Page 232
6.5.1 SiO2 Nanotubes......Page 240
6.5.2 TiO2 Nanotubes......Page 242
6.5.3 ZnO, CdO, and Al2O3 Nanotubes......Page 247
6.5.4 Nanotubes of Vanadium and Niobium Oxides......Page 251
6.5.5 Nanotubes of other Transition Metal Oxides......Page 254
6.5.6 Nanotubes of other Binary Oxides......Page 256
6.5.7 Nanotubes of Titanates and other Complex Oxides......Page 259
6.6 Pnictide Nanotubes......Page 261
6.8 Complex Inorganic Nanostructures Based on Nanotubes......Page 266
References......Page 267
7.2 Gold Nanoparticles......Page 275
7.3 Carbon Nanotubes......Page 277
7.4 CNT–Metal Nanoparticle Composites......Page 280
7.5.1 Filling of CNT s with AuNPs......Page 281
7.5.2 Deposition of AuNPs Directly on the CNT Surface......Page 282
7.5.3 Interaction Between Modified AuNPs and CNTs......Page 293
7.5.3.1 Covalent Linkage......Page 294
7.5.3.2 Supramolecular Interaction Between AuNPs and CNTs......Page 297
7.6 Applications......Page 314
7.7 Merits and Demerits of Synthetic Approaches......Page 315
7.8 Conclusions......Page 317
References......Page 318
8.1 Introduction......Page 323
8.2 Seed-Mediated Growth Method for the Attachment and Growth of AuNPs on ITO......Page 324
8.3 Electrochemical Applications of AuNP-Attached ITO......Page 326
8.4 Improved Methods for Attachment and Growth of AuNPs on ITO......Page 328
8.5 Attachment and Growth of AuNPs on Other Substrates......Page 332
8.6 Attachment and Growth of Au Nanoplates on ITO......Page 334
8.7 Attachment and Growth of Silver Nanoparticles (AgNPs) on ITO......Page 335
8.8 Attachment and Growth of Palladium Nanoparticles PdNPs on ITO......Page 337
8.9 Attachment of Platinum Nanoparticles PtNPs on ITO and GC......Page 338
8.11 Nonlinear Optical Properties of Metal NP-Attached ITO......Page 341
References......Page 342
9.1 Mesostructured Materials for Energy Storage Devices......Page 345
9.2 Mesoscale Fabrication of Inorganic Electrode-Active Materials......Page 348
9.3.1 Conjugated Polymers for Electrode-Active Materials......Page 349
9.3.2 Mesoscale Organic Radical Polymer Electrodes......Page 350
References......Page 356
10.1 Introduction......Page 359
10.2 Preparations......Page 360
10.2.3 Gold Nanocatalysts......Page 361
10.3.1 Gold Catalysts......Page 363
10.3.3 Gold–Silver Alloy Catalysts......Page 368
10.3.4 Copper Catalysts......Page 369
10.4.1 Gold Catalysts......Page 370
10.4.2 Silver Catalysts......Page 372
10.5 Selective Oxidation of Hydrocarbons......Page 373
10.5.1 Gold Catalysts......Page 375
10.6 Oxidation of Alcohols and Aldehydes......Page 376
10.6.2 Silver Catalysts......Page 377
10.7 Direct Synthesis of Hydrogen Peroxide......Page 379
10.8 Conclusions......Page 380
References......Page 381
11.1 Introduction......Page 391
11.2 Preparation of Key Compounds......Page 392
11.3 Structure of the [(A(18C6))4(MX 4)] [BX4] 2 · nH2O Complexes......Page 393
11.5 Spectroscopy of the Cubic F 23 [(A(18C6))4 (MX4)] [BX4]2 · nH2O......Page 394
11.6 Unusual Luminescence Spectroscopy of Some Cubic [(A(18C6))4 (MnX4)] [TlCl4]2 · nH2O Compounds......Page 398
11.7 Luminescence Decay Dynamics and 18C6 Rotations......Page 400
11.8 Conclusions......Page 401
References......Page 403
12.1 Introduction......Page 405
12.2.1 Nature of the Organic Dye......Page 406
12.2.2.1 Oligo(p-Phenylene Vinylene) as Luminescent Dyes......Page 407
12.2.2.2 Bis(Benzoxazolyl) Stilbene as a Luminescent Dye......Page 409
12.2.2.3 Perylene Derivatives as Luminescent Dyes......Page 410
12.2.3.1 Oligo(p-Phenylene Vinylene) as Luminescent Dyes......Page 411
12.2.3.2 Bis(Benzoxazolyl) Stilbene as Luminescent Dye......Page 413
12.2.3.3 Anthracene Triaryl Amine-Terminated Diimide as Luminescent Dye......Page 414
12.3.1 Optical Properties of Metal Nanoassemblies......Page 415
12.3.2.1 The Use of Metal Nanoparticles......Page 417
12.3.2.2 The Use of Metal Nanorods......Page 421
12.4 Conclusions......Page 423
References......Page 424
13.1 Introduction......Page 429
13.1.1.1 Clays......Page 430
13.1.2 Morphology of Composites......Page 434
13.2 Polyolefin-Based Nanocomposites......Page 437
13.2.1 Overview of the Preparation Methods......Page 438
13.2.2 Organophilic Clay and Compatibilizer: Interactions with the Polyolefin Matrix......Page 440
13.2.3 The One-Step Process......Page 452
13.3 Poly(Ethylene Terephthalate)-Based Nanocomposites......Page 455
13.3.1 In Situ Polymerization......Page 456
13.3.2 Intercalation in Solution......Page 459
13.3.3 Intercalation in the Melt......Page 460
13.4.1.1 In Situ Polymerization......Page 465
13.4.1.2 Intercalation in Solution......Page 468
13.4.1.3 Intercalation in the Melt......Page 469
13.5 Conclusions......Page 473
Acknowledgments......Page 475
References......Page 476
Volume 2......Page 489
14.1 Introduction......Page 511
14.2.1 Natural Clays and Synthetic Layered-Double-Hydroxide (LDH)......Page 512
14.2.2 Low-Molecular-Weight Intercalating Agents and X-Ray Diffraction d-Spacing......Page 513
14.3.1 Poly(Oxyalkylene)-Polyamine Salts as Intercalating Agents......Page 514
14.3.2 Critical Conformational Change in Confinement During the Intercalating Profile......Page 516
14.4.1 Various Structures of the Amphiphilic Copolymers......Page 518
14.5.1 Amidoacid and Carboxylic Acid Chelating......Page 521
14.5.2 Intercalation Involving Intermolecular Hydrogen Bonding......Page 522
14.6 Self-Assembling Properties of Organoclays......Page 523
14.7.1 Thermodynamically Favored Exfoliation of Na+-MMT by the PP-POP Copolymers......Page 524
14.8 Isolation of the Randomized Silicate Platelets in Water......Page 525
14.9 Emerging Applications in Biomedical Research......Page 527
14.10 Conclusions......Page 529
References......Page 530
15.1 Introduction......Page 533
15.2.1.1 Synthesis......Page 534
15.2.1.2 Characterization......Page 536
15.2.2 Examples of Synthesis......Page 537
15.2.2.1 Neutral Surfactant Templating......Page 538
15.2.2.2 Anionic Surfactant Templating......Page 544
15.2.2.3 Cationic Surfactant Templating......Page 547
15.2.2.4 Nonsurfactant Templating......Page 550
15.3 Mesoporous Alumina in Heterogeneous Catalysis......Page 552
15.3.1 Base-Catalyzed Reactions......Page 560
15.3.2 Epoxidation......Page 561
15.3.3 Hydrodechlorination......Page 562
15.3.4 Hydrodesulfurization......Page 564
15.3.5 Olefin Metathesis......Page 565
15.3.6 Oxidative Dehydrogenation......Page 569
15.3.7 Oxidative Methanol Steam Reforming......Page 570
References......Page 571
16.1 Introduction......Page 575
16.2.1 Scaffolds......Page 579
16.2.2 Liposomes......Page 583
16.3 Nanohydroxyapatite Powders for Medical Applications......Page 584
16.4.1 Calcium Phosphate Coatings......Page 587
16.4.2 Sol–Gel Nanohydroxyapatite and Nanocoated Coralline Apatite......Page 590
16.4.3 Surface Modifications......Page 592
16.5 Simulated Body Fluids......Page 593
16.6.1 Nanobioceramics for Drug Delivery......Page 598
16.6.2 Microbioceramics for Drug Delivery......Page 600
16.6.3 Microbioceramics for Radiotherapy......Page 601
16.7 Nanotoxicology and Nanodiagnostics......Page 603
References......Page 604
17.2 Fracture Manner of Ceramics......Page 607
17.3 History......Page 609
17.4 Mechanism......Page 611
17.5.1 Composition......Page 614
17.5.2 SiC Figuration......Page 615
17.5.3 Matrix......Page 618
17.6.1 Atmosphere......Page 619
17.6.2 Temperature......Page 620
17.6.3 Stress......Page 623
17.7.1 Crack-healing Effects on Fracture Probability......Page 625
17.7.2 Fatigue Strength......Page 627
17.7.3 Crack-healing Effects on Machining Efficiency......Page 629
17.8.1 Outline......Page 631
17.8.2 Theory......Page 632
17.8.3 Temperature Dependence of the Minimum Fracture Stress Guaranteed......Page 634
17.9.1 Multicomposite......Page 637
17.9.2 SiC Nanoparticle Composites......Page 639
17.10 Availability to Structural Components of the High Temperature Gas Turbine......Page 640
References......Page 642
18.1 Introduction......Page 647
18.2.2 Stability in Aquatic Systems......Page 648
18.2.3 Bioavailability and Uptake......Page 650
18.2.5 Food Web......Page 652
18.3.2 Oxidative Stress and Nanoparticles......Page 654
18.3.3.1 Brain......Page 658
18.3.3.3 Liver......Page 659
18.3.4 Developmental Effects......Page 660
18.4 Summary......Page 661
References......Page 662
19.1 Introduction......Page 667
19.2 Structure and Synthesis of Carbon Nanotubes......Page 668
19.3.2 Adsorption-Related Properties of Carbon Nanotubes......Page 672
19.4 Carbon Nanotubes as Adsorbents......Page 674
19.4.1.1 Adsorption of Lead (II)......Page 676
19.4.1.2 Adsorption of Chromium (VI)......Page 678
19.4.1.3 Adsorption of Cadmium (II)......Page 680
19.4.1.4 Adsorption of Copper (II)......Page 681
19.4.1.5 Adsorption of Zinc (II)......Page 682
19.4.1.6 Adsorption of Nickel (II)......Page 684
19.4.1.7 Competitive Adsorption of Heavy Metals Ions......Page 685
19.4.2 Adsorption of Other Inorganic Elements......Page 686
19.4.2.1 Adsorption of Fluoride......Page 687
19.4.2.2 Adsorption of Arsenic......Page 689
19.4.2.3 Adsorption of Americium-243 (III)......Page 690
19.4.3.1 Adsorption of Dioxins......Page 691
19.4.3.2 Adsorption of 1,2-Dichlorobenzene......Page 692
19.4.3.3 Adsorption of Trihalomethanes......Page 694
19.4.3.4 Adsorption of Polyaromatic Compounds......Page 695
19.5 Summary of the Results, and Conclusions......Page 696
References......Page 699
20.1.1 Molecular Imprinting: The Concept......Page 703
20.1.1.1 History of Molecular Imprinting......Page 705
20.1.1.3 Noncovalent Imprinting......Page 706
20.1.2 Towards Imprinting with Nanomaterials......Page 708
20.2.1.1 Core–Shell Emulsion Polymerization......Page 709
20.2.1.2 Mini-Emulsion Polymerization......Page 712
20.2.2 Precipitation Polymerization......Page 713
20.2.2.1 Applications and Variations......Page 714
20.2.2.2 Microgel/Nanogel Polymerization......Page 716
20.2.3 Silica Nanoparticles......Page 717
20.2.4 Molecularly Imprinted Nanoparticles: Miscellaneous......Page 719
20.3.1 Nanowires, Nanotubes, and Nanofibers......Page 720
20.3.2 Quantum Dots......Page 721
20.3.3 Fullerene......Page 722
20.3.4 Dendrimers......Page 723
20.4 Conclusions and Future Prospects......Page 724
References......Page 725
21.1 Introduction......Page 729
21.2 Near-Field Raman Imaging Techniques......Page 730
21.3 Visualization of Si–C Covalent Bonding of Single Carbon Nanotubes Grown on Silicon Substrate......Page 734
21.4 Near-Field Scanning Raman Microscopy Using TERS......Page 738
21.5 Near-Field Raman Imaging Using Optically Trapped Dielectric Microsphere......Page 740
References......Page 747
22.1 Introduction......Page 751
22.2 Fullerene-Rich Dendritic Branches......Page 752
22.3 Photoelectrochemical Properties of Fullerodendrons and Their Nanoclusters......Page 756
22.4 Fullerene-Rich Dendrimers......Page 760
Acknowledgments......Page 764
References......Page 765
23.2 Structure and Properties......Page 767
23.3 Debundalization......Page 768
23.4 Noncovalent Functionalization......Page 770
23.5 Dispersion of Carbon Nanotubes in Biopolymers......Page 771
23.6 Interaction of DNA with Carbon Nanotubes......Page 772
23.7 Interaction of Proteins with Carbon Nanotubes......Page 775
23.8 Technology Development Based on Biopolymer-Carbon Nanotube Products......Page 781
23.8.1 Diameter- or Chirality-Based Separation of Carbon Nanotubes......Page 786
23.8.2 Fibers......Page 788
23.8.3 Sensors......Page 789
Acknowledgments......Page 790
References......Page 791
24.1 Introduction......Page 795
24.2 Synthesis of Nanoparticle-Cored Dendrimers via the Direct Method, and their Properties and Application......Page 797
24.3 Synthesis of Nanoparticle-Cored Dendrimers by Ligand Exchange Reaction, and their Properties and Applications......Page 805
24.4 Synthesis of Nanoparticle-Cored Dendrimers by Dendritic Functionalization, and their Properties and Applications......Page 810
24.4.1 Nanoparticle-Cored Dendrimers by the Convergent Approach......Page 811
24.4.2 Nanoparticle-Cored Dendrimers by the Divergent Approach......Page 813
24.5 Synthesis of Nanoparticle-Cored Hyperbranched Polymers by Grafting on Nanoparticles......Page 815
Acknowledgment......Page 816
References......Page 817
25.1 Introduction......Page 819
25.2.1 Thermodynamics of Self-Organization......Page 822
25.2.2 The “Goodness” of the Organization......Page 824
25.2.3 Programmable Self-Assembly......Page 825
25.3.1 The Addition of Particles to the Solid/Liquid Interface......Page 826
25.3.2 Self-Assembled Monolayers (SAMs)......Page 828
25.3.3 Quantum Dots (QDs)......Page 830
25.3.4 Crystallization and Supramolecular Chemistry......Page 831
25.3.5 Biological Examples......Page 832
25.3.7 RNA and Proteins......Page 833
25.4 Self-Assembly as a Manufacturing Process......Page 835
25.5.2 Percolation......Page 836
25.5.3 Cooperativity......Page 837
25.5.4 Water Structure......Page 838
References......Page 839
26.1 Introduction......Page 843
26.2.1 Concentration Effects......Page 845
26.2.2 Temperature Effects......Page 853
26.2.3 Microdomain Alignment......Page 856
26.2.4 Tensile Deformation......Page 858
26.2.5.1 Inorganic Nanofillers......Page 860
26.2.5.2 Polymeric Modifiers......Page 862
26.2.6 Nonequilibrium Mesogels......Page 864
26.2.7.1 Liquid Crystals......Page 866
26.2.7.3 Multiblock Copolymers......Page 867
26.3 Organic Gelator Networks......Page 868
26.3.1 Hydrogen Bonding......Page 870
26.3.1.1 Amides......Page 871
26.3.1.3 Sorbitols......Page 872
26.3.2 π−π Stacking......Page 874
26.3.4.1 Biologically Inspired Gelators......Page 876
26.3.4.2 Isothermal Gelation......Page 877
26.3.4.3 Solvent Effects......Page 878
26.4 Conclusions......Page 879
References......Page 880
27.1 Introduction......Page 887
27.2.1.1 Polypeptide Hybrid Block Copolymers......Page 889
27.2.1.2 Block Copolypeptides......Page 893
27.2.3 Organic/Inorganic Hybrid Structures......Page 894
27.3.1.1 Polydiene-based Diblock Copolymers......Page 896
27.3.1.2 Polystyrene-based Diblock Copolymers......Page 897
27.3.1.3 Polyether-based Diblock Copolymers......Page 902
27.3.1.5 Diblock Copolypeptides......Page 903
27.3.2.1 Polydiene-based Triblock Copolymers......Page 904
27.3.2.2 Polystyrene-based Triblock Copolymers......Page 908
27.3.2.3 Polysiloxane-based Triblock Copolymers......Page 909
27.3.2.4 Polyether-based Triblock Copolymers......Page 910
27.3.2.5 Miscellaneous......Page 914
27.4 Summary and Outlook......Page 916
References......Page 917
28.1 Introduction......Page 921
28.2 Periodic DNA Nanoarrays......Page 923
28.3 Finite-Sized and Addressable DNA Nanoarrays......Page 924
28.4 DNA Polyhedron Cages......Page 926
28.5 DNA Nanostructure-Directed Nanomaterial Assembly......Page 928
28.6 Concluding Remarks......Page 929
References......Page 930
Index......Page 933