This book explains one of the hottest topics in wireless and electronic devices community, namely the wireless communication at mmWave frequencies, especially at the 60 GHz ISM band. It provides the reader with knowledge and techniques for mmWave antenna design, evaluation, antenna and chip packaging. Addresses practical engineering issues such as RF material evaluation and selection, antenna and packaging requirements, manufacturing tolerances, antenna and system interconnections, and antenna One of the first books to discuss the emerging research and application areas, particularly chip packages with integrated antennas, wafer scale mmWave phased arrays and imaging Contains a good number of case studies to aid understanding Provides the antenna and packaging technologies for the latest and emerging applications with the emphases on antenna integrations for practical applications such as wireless USB, wireless video, phase array, automobile collision avoidance radar, and imaging
Author(s): Duixian Liu, Ulrich Pfeiffer, Janusz Grzyb, Brian Gaucher
Edition: 1
Year: 2009
Language: English
Pages: 850
Tags: Приборостроение;Антенно-фидерные устройства;
Advanced Millimeter-wave Technologies......Page 4
Contents......Page 8
List of Contributors......Page 18
Preface......Page 22
References......Page 24
1 Introduction......Page 26
1.1 Challenges......Page 27
1.3 Circuits......Page 29
1.4 Antenna......Page 30
1.5.2 Transmitter......Page 31
1.6 Packaging......Page 32
1.7 Organization and Flow of this Book......Page 34
References......Page 38
2 Millimeter-wave Packaging......Page 40
2.1 Introduction......Page 43
2.1.1 Definition of Packaging......Page 46
2.1.2 Packaging Challenges and Future Directions......Page 48
2.2.1 MMICs......Page 52
2.2.2 CNC Milled Metal Housings......Page 54
2.2.3 Multi-chip Packages......Page 55
2.3 Low-cost mmWave Packaging......Page 56
2.3.1 Low-cost Plastic Molding at mmWaves......Page 57
2.3.2 Chip-on-board at mmWaves......Page 58
2.4.2 Glass Microwave Integrated Circuit (GMIC, HMIC) – TYCO, M/A-COM......Page 59
2.4.4 Plastic Molded MMICs – UMS......Page 60
2.4.5 DCA with Integrated Antenna – IBM......Page 61
2.4.6 LGA with Integrated Antenna – IBM......Page 63
2.4.7 Wafer-level Packaging and Assembly of mmWave Devices......Page 66
2.5 Package Codesign at mmWaves......Page 67
2.5.1 Electromagnetic Modeling of mmWave Packages and Interconnects......Page 68
2.5.2 Integrated Antennas......Page 69
References......Page 70
3.1 Introduction......Page 74
3.3 Outside the THz Gap – Material Characterization Techniques......Page 75
3.3.2 Resonant Cavity (~0.5–50 GHz)......Page 77
3.3.3 Transmission Line Methods (~0.01–300 GHz)......Page 80
3.3.4 THz TDS (~0.1–10 THz)......Page 81
3.4 THz TDS (~0.1–10 THz)......Page 82
3.4.1 Transmission......Page 83
3.4.2 Error Analysis......Page 87
3.5.2 Ceramic Materials......Page 89
3.5.5 Biomaterials......Page 90
References......Page 91
4 Millimeter-wave Interconnects......Page 96
4.1 Introduction......Page 98
4.2 Interconnects at Millimeter-wave Frequencies......Page 99
4.2.1 Printed Planar Transmission Lines......Page 100
4.2.2 Metal Rectangular Waveguides......Page 115
4.3.1 Basic Technological Requirements......Page 116
4.3.2 MCM-L......Page 128
4.3.3 LTCC......Page 130
4.3.4 MCM-D......Page 132
4.3.5 Flexible Substrates......Page 136
4.3.6 Silicon Micromachining......Page 137
4.3.7 Plastic Injection Molding......Page 142
4.4 Performance-oriented Interconnect Technology Optimization......Page 143
4.4.1 Performance-oriented BCB Dielectric Thickness Optimization......Page 144
4.4.2 Transmission Line Discontinuities and Distributed Passives......Page 147
4.4.3 Bends......Page 150
4.5 Chip-to-package Interconnects at Millimeter-wave Frequencies......Page 159
4.5.1 Wirebonding......Page 161
4.5.2 Flip-chip Bonding......Page 165
4.5.3 Alternative Chip Interconnection Methods......Page 170
References......Page 173
5.1.1 Introduction......Page 188
5.1.3 Results of Substrate Characterization Using Printed Resonant Circuits......Page 191
5.1.4 Substrate Choice: Impacton Antenna Efficiency......Page 195
5.1.5 Feeding Line Influence on Radiating Patterns......Page 198
5.2.1 Introduction......Page 201
5.2.2 Multilayer Technologies on Soft Substrate with Thick Ground Plane......Page 205
5.3.1 Directive Pattern with Passive Linear Array......Page 224
5.3.2 Sector Beam with Linear Array......Page 227
5.3.3 Cosecant Beam with Linear Array......Page 231
5.3.4 Highly Directive Antennas......Page 233
5.3.5 Multibeam Antenna......Page 240
5.4 Measurement Disturbances: Connector and Diffraction Problems for Printed Antennas......Page 244
5.4.1 Impact of Bonding Wire on Antenna Input Impedance......Page 247
5.4.2 Impact of Diffraction Effects on the Ground Plane and on the Connecting Circuitry......Page 249
5.5 Conclusion......Page 254
References......Page 255
6.1 Introduction......Page 258
6.2.1 Waveguide with a Round-ended Slot......Page 259
6.2.2 Comparison Between Calculation and Measurement......Page 260
6.2.3 Equal-area and Equal-perimeter Rectangular Slots for a Round-ended One......Page 262
6.3.1 Alternating-phase Fed Arrays......Page 265
6.3.2 Array Design......Page 266
6.3.3 Measurements......Page 268
6.4.1 Structure of a Center Feed Array......Page 272
6.4.2 Suppression of Sidelobes due to Aperture Blockage by Center Feed Waveguide......Page 273
6.4.3 Experimental Results......Page 274
6.4.4 Polarization Isolation between two Center-feed Single-layer Waveguide Arrays Arranged Side-by-Side......Page 278
6.5.2 Design of the Couplers......Page 281
6.5.3 Design of Phase Shifters for the Eight-way Butler Matrix......Page 284
6.5.4 Characteristics of the Butler Matrix......Page 286
6.6.1 High Gain Radial Line Slot Antennas with a Boresight Beam......Page 291
6.6.2 Small Aperture Conical Beam Radial Line Slot Antennas......Page 294
6.7.1 Transmission Loss in Post Waveguide......Page 301
6.7.2 Structure......Page 302
6.7.3 Antenna EfFIciency as a Function of the Size......Page 303
6.7.4 Sidelobe Suppression and 45 Linear Polarization......Page 304
6.8.1 Transformer Using a Quasi-coaxial Structure and a Post-wall Waveguide......Page 305
6.8.2 Transformer between a Coaxial Line and a Post-wall Waveguide in PTFE Substrate......Page 309
References......Page 316
7.1 Introduction......Page 320
7.1.1 Material Selection......Page 321
7.1.2 Antenna Feed Line......Page 322
7.1.3 Flip-chip Mount......Page 323
7.1.4 Electromagnetic Interference Issues......Page 324
7.1.5 Packaging Effects......Page 325
7.1.6 Antenna Design......Page 327
7.2 Air-suspended Superstrate Antenna......Page 328
7.2.1 Air-suspended Superstrate Antenna Designs......Page 330
7.2.2 Air-suspended Superstrate Antenna Evaluation......Page 332
7.3 Packaged Antennas......Page 334
7.3.1 Cavity Size Effects on Antenna Performances......Page 340
7.3.2 Packaging Effects on Antenna Performance......Page 341
7.3.3 Antennain System Performance......Page 348
7.4 A Patch Array......Page 350
7.5 Circularly Polarized Antenna......Page 353
7.6 Assembly Process......Page 359
7.7 Advanced Packaging Application......Page 360
7.7.1 LTCC-based Packages......Page 361
7.7.2 Silicon-based Packages......Page 367
References......Page 373
8.1 Introduction......Page 378
8.2.1 Antenna Size......Page 379
8.2.3 Antenna Efficiency......Page 381
8.3 Manufacturing Techniques for Enhanced Antenna Performance......Page 382
8.4 Selection and Design of the On-chip Radiator......Page 383
8.4.1 Patch Antennas......Page 384
8.4.2 Dipole and Slot Antenna......Page 387
8.4.3 Inverted-F Antenna......Page 393
8.4.4 Loop Antennas......Page 395
8.5.1 Cross-talk......Page 401
8.5.2 Monolithic Integrated Antenna Examples......Page 402
8.6 Packaging of Integrated Circuits with On-chip Antennas......Page 404
8.7 Monolithic Antenna Measurement Techniques......Page 405
References......Page 406
9.1 Introduction......Page 410
9.2 Left-handed Metamaterials: Transmission Line Approach......Page 411
9.2.1 Composite Right/Left-handed Resonator Theory......Page 412
9.2.2 Small Resonant CRLH TL Antennas......Page 414
9.2.3 Infinite Wavelength Resonant Antennas......Page 419
9.2.4 N-port Infinite Wavelength Series Feed Network......Page 425
9.3 Left-handed Metamaterials: Evanescent-mode Approach......Page 426
9.3.1 Leaky Wave Antennas Based on Evanescent-mode LH Metamaterials......Page 428
9.4 mmWave Metamaterial Antenna Applications......Page 430
9.4.1 94 GHz CRLH TL Feed Network......Page 431
9.4.2 W-band CRLH TL Leaky Wave Antenna......Page 432
References......Page 435
10.1 Introduction......Page 438
10.2.1 One-dimensional, Two-dimensional and Three-dimensional EBG Materials......Page 439
10.2.2 EBG Waveguides and Components......Page 445
10.2.3 High Impedance Ground Planes......Page 449
10.3 Printed Antennas on EBG Substrates......Page 452
10.4.1 High Gain PRS and Fabry–Perot Antennas......Page 454
10.4.2 High-gain One-dimensional EBG Resonat or Antennas......Page 455
10.4.3 High-gain Two-dimensional EBG Resonat or Antennas......Page 458
10.4.4 High-gain Three-dimensional EBG Resonat or Antennas......Page 459
10.4.5 High-gain Metamaterial Antennas......Page 462
10.5.1 Woodpile EBG Sectoral Horn Antennas......Page 463
10.5.2 Woodpile EBG Array Antennas......Page 465
10.7 Summary......Page 468
References......Page 469
11.1 Introduction......Page 476
11.2 Switch Applications in mmWave Wireless Communication Systems......Page 477
11.3 Switch Specifications......Page 479
11.4 Impact of Switch Performance on Communication System......Page 481
11.5.1 Series SPST Switch First-order Model......Page 482
11.5.4 Switch Figure-of-merit......Page 483
11.5.6 SPDT with Series and Shunt Switches......Page 484
11.5.7 SPDT with Series and Shunt Switches and Matching Inductor......Page 487
11.6.1 PIN Diode Switch......Page 492
11.6.2 NFET Switch......Page 494
11.6.3 Small-signal 65 nm CMOS mmWave Switch Design......Page 495
11.6.4 Large-signal 65 nm CMOS mmWave Switch Design......Page 496
11.7.2 Performance Comparison of CMOS Switches......Page 499
11.7.3 Performance Comparison of III-V Switches......Page 501
11.7.4 Performance Comparison of mmWave Switches......Page 502
11.7.5 Power Handling for Different Semi-conductor Technologies......Page 504
References......Page 505
12.1 Introduction......Page 508
12.2 Micromachining Techniques......Page 509
12.3 MEMS Switches – Principle of Operation......Page 511
12.3.1 Mechanical Spring Constant......Page 512
12.3.2 Electrostatic Force......Page 513
12.3.3 Pull-in and Release Voltage......Page 514
12.4 Contact and Capacitive MEMS Switches......Page 516
12.4.1 Ohmic Contact MEMS Switches – Series Configuration......Page 517
12.4.2 Broadband Capacitive MEMS Switches – Shunt Configuration......Page 522
12.4.3 Switch Performance and Design Considerations......Page 528
12.5 MEMS Reliability and Power Handling......Page 531
12.5.1 Reliability and Failure Modes......Page 532
12.5.2 Power Handling......Page 534
12.6 Integration of MEMS Switches with Antennas......Page 537
12.6.1 Hybrid Integration......Page 538
12.6.3 Integration Issues......Page 539
12.7 MEMS for Reconfigurable Antennas......Page 541
12.7.1 MEMS-based Frequency Reconfigurable Antenna......Page 542
12.7.2 Example Configurations......Page 544
12.7.3 Frequency Tuning by Changing the Effective Dielectric Constant......Page 547
12.8.1 Mechanical Beam Steering......Page 550
12.8.2 Electronic Beam Scanning Using MEMS Phase Shifters......Page 551
12.8.3 MEMS-enabled Antenna Pattern Reconfiguration......Page 554
12.8.4 MEMS-enabled Reflect Array Antennas......Page 555
12.9 Future Applications/Outlook......Page 557
References......Page 558
13.1.1 Introduction......Page 562
13.1.2 Continuous Line Source Antenna......Page 563
13.1.3 From Continuous Line Source Antenna to Phased Array Antenna......Page 567
13.2 Antenna Element Design for Phased Arrays......Page 573
13.2.1 Mutual Coupling......Page 575
13.2.2 Large Array Design Methodology......Page 576
13.2.3 Finite Array Design Methodology......Page 585
13.3.1 Introduction......Page 594
13.3.2 Different Beam-forming Network of Complex Weightings......Page 595
13.4.1 Design Considerations......Page 607
13.4.2 Fabrication......Page 613
13.4.3 Assembly......Page 616
References......Page 620
14.1 Introduction......Page 622
14.2 Integrated Phased Arrays......Page 624
14.2.1 Principles of Phased Arrays......Page 625
14.2.2 Benefits of Phased Arrays......Page 626
14.2.3 Silicon Integration Challenges......Page 629
14.2.4 Integrated Antennas in Silicon......Page 630
14.2.5 Architectural Considerations......Page 633
14.3.1 Architecture......Page 637
14.3.2 Circuit Blocks......Page 640
14.3.3 Experimental Results......Page 648
14.4 Direct Antenna Modulation (DAM)......Page 653
14.4.1 Concept......Page 654
14.4.2 Implementation......Page 657
14.4.3 Experimental Results......Page 660
14.5 Large-scale Integrated Phased Arrays......Page 661
14.5.1 Large-scale Phased-array Architecture......Page 663
14.5.2 CMOS Phased-array Element......Page 665
14.5.3 Experimental Results......Page 669
14.6 Conclusions......Page 672
References......Page 673
15.1 Introduction to mmWave and THz Imaging......Page 676
15.2 Passive mmWave Imaging Systems......Page 680
15.3 Active mmWave Imaging......Page 684
15.4 Representative Examples of Passive and Active mmWave Imaging Systems......Page 685
15.4.1 Three-dimensional Active mmWave Video Camera......Page 686
15.4.2 PMMW Cameras......Page 688
15.4.3 ECEI/MIR......Page 692
15.4.4 mmWave Imaging System Applications in Astronomy......Page 702
15.4.5 mmWave and THz Radars......Page 704
15.5 THz Imaging Technology......Page 705
15.6.1 Mixers......Page 708
15.6.2 Direct Detection Receiver......Page 711
15.6.3 Microbolometer Focal Plane Arrays......Page 713
15.6.4 LO and Probe Sources......Page 714
15.6.5 Quasi-optical Power Combining......Page 716
15.6.6 Beam Formation and Shaping......Page 717
15.6.7 Imaging Optics......Page 722
References......Page 724
16.1 Outlook for Low-cost, High-volume mmWave Systems......Page 734
16.2 Example: 60 GHz SiGe Transceiver......Page 736
16.3 Demonstration Board for 60 GHz SiGe Transceiver......Page 741
16.4 Transceiver ICs as Part of Larger Digital System......Page 743
16.5 Future Evolution......Page 750
References......Page 751
17.1 Introduction......Page 754
17.2 Overview of Modern Vector Error Calibration Methods......Page 755
17.3 Lumped Element De-embedding......Page 756
17.4 Determination of Transmission Line Parameters from S-Parameter Measurements......Page 759
17.4.1 Propagation Constant Determination from Measurement of Two Transmission Lines of Different Length......Page 760
17.5 Probe-based Antenna Measurement......Page 762
17.5.1 Calibration Method......Page 763
17.5.2 Derivation of Error Terms for SOL Calibration......Page 766
17.5.3 Example of Setup for the Frequency Range of 50 GHz to 65 GHz......Page 767
17.6 Non-destructive IC Package Characterization......Page 769
17.6.1 Formulation of the Algorithm......Page 771
17.6.2 TestChips for Non-destructive Package Characterization......Page 774
17.6.5 Non-destructive Flip-chip Ball Interconnect Characterization......Page 779
17.6.6 Discussion and Outlook......Page 788
17.6.7 Nomenclature......Page 789
References......Page 790
18.1.1 Review Existing Packaging Technology......Page 796
18.1.2 Advantages and Limitations......Page 797
18.2.1 Key Silicon-based Packaging Technology Elements and Application Examples......Page 798
18.3.1 Introduction to Semiconductor Processing......Page 801
18.3.2 Lithography......Page 802
18.3.3 Silicon Micromachining......Page 808
18.3.4 Metallization......Page 813
18.3.5 Wafer Thinning......Page 822
18.4.1 Wafer-level Processes......Page 824
18.4.2 Die-level Processing......Page 829
18.5 Example of mmWave System on Silicon Package......Page 830
References......Page 833
Index......Page 838