Advanced MEMS Packaging (Electronic Engineering)

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

A comprehensive guide to 3D MEMS packaging methods and solutions Written by experts in the field, Advanced MEMS Packaging serves as a valuable reference for those faced with the challenges created by the ever-increasing interest in MEMS devices and packaging. This authoritative guide presents cutting-edge MEMS (microelectromechanical systems) packaging techniques, such as low-temperature C2W and W2W bonding and 3D packaging. This definitive resource helps you select reliable, creative, high-performance, robust, and cost-effective packaging techniques for MEMS devices. The book will also aid in stimulating further research and development in electrical, optical, mechanical, and thermal designs as well as materials, processes, manufacturing, testing, and reliability. Among the topics explored: Advanced IC and MEMS packaging trends MEMS devices, commercial applications, and markets More than 360 MEMS packaging patents and 10 3D MEMS packaging designs TSV for 3D MEMS packaging MEMS wafer thinning, dicing, and handling Low-temperature C2C, C2W, and W2W bonding Reliability of RoHS-compliant MEMS packaging Micromachining and water bonding techniques Actuation mechanisms and integrated micromachining Bubble switch, optical switch, and VOA MEMS packaging Bolometer and accelerameter MEMS packaging Bio-MEMS and biosensor MEMS packaging RF MEMS switches, tunable circuits, and packaging

Author(s): John Lau, Cheng Lee, C. Premachandran, Yu Aibin
Edition: 1
Year: 2009

Language: English
Pages: 576

Contents......Page 8
Foreword......Page 16
Preface......Page 18
Acknowledgments......Page 22
1.1 Introduction......Page 26
1.3 MEMS Markets......Page 27
1.5 Introduction to MEMS Packaging......Page 30
1.6.1 U.S. MEMS Packaging Patents......Page 31
1.6.2 Japanese MEMS Packaging Patents......Page 46
1.6.3 Worldwide MEMS Packaging Patents......Page 52
References......Page 68
2.2.1 Moore’s Law versus More Than Moore (MTM)......Page 72
2.2.2 3D IC Integration with WLP......Page 74
2.2.3 Low-Cost Solder Microbumps for 3D IC SiP......Page 77
2.2.4 Thermal Management of 3D IC SiP with TSV......Page 83
2.3 Advanced MEMS Packaging......Page 92
2.3.1 3D MEMS WLP: Designs and Materials......Page 93
2.3.2 3D MEMS WLP: Processes......Page 97
References......Page 101
3.2 TSVs for MEMS Packaging......Page 106
3.2.1 Via Formation......Page 107
3.2.2 Dielectric Isolation Layer (SiO[sub(2)]) Deposition......Page 111
3.2.3 Barrier/Adhesion and Seed Metal Layer Deposition......Page 112
3.2.4 Via Filling......Page 114
3.2.5 Cu Polishing by Chemical/Mechanical Polish (CMP)......Page 116
3.2.6 Fabrication of an ASIC Wafer with TSVs......Page 117
3.3.1 Design and Fabrication of Piezoresistive Stress Sensors......Page 118
3.3.2 Calibration of Stress Sensors......Page 120
3.3.3 Stresses in Wafers after Mounting on a Dicing Tape......Page 123
3.3.4 Stresses in Wafers after Thinning (Back-Grinding)......Page 126
3.4.1 3M Wafer Support System......Page 129
3.4.2 EVG’s Temporary Bonding and Debonding System......Page 130
3.4.3 A Simple Support-Wafer Method for Thin-Wafer Handling......Page 133
3.5 Low-Temperature Bonding for MEMS Packaging......Page 136
3.5.1 How Does Low-Temperature Bonding with Solders Work?......Page 137
3.5.2 Low-Temperature C2C Bonding......Page 138
3.5.3 Low-Temperature C2W Bonding......Page 147
3.5.4 Low-Temperature W2W Bonding......Page 149
3.6.1 Fundamentals of SD Technology......Page 151
3.6.2 Dicing of SOI Wafers......Page 154
3.6.4 Dicing of Silicon-on-Glass Wafers......Page 155
3.7.1 EU RoHS......Page 158
3.7.3 What Is a Homogeneous Material?......Page 159
3.7.6 EU RoHS Exemptions......Page 160
3.7.8 Lead-Free Solder-Joint Reliability of MEMS Packages......Page 163
References......Page 174
4.1 Introduction......Page 182
4.2.1 Thin-Film Technologies......Page 183
4.2.2 Bulk Micromachining Technologies......Page 184
4.2.3 Conventional Wafer-Bonding Technologies for Packaging......Page 193
4.2.5 Electrical Interconnects......Page 197
4.2.6 Solder-Based Intermediate-Layer Bonding......Page 200
4.3 Wafer-Level Encapsulation......Page 201
4.3.1 High-Temperature Encapsulation Process......Page 202
4.3.2 Low-Temperature Encapsulation Process......Page 203
4.4 Wafer-Level Chip Capping and MCM Technologies......Page 205
4.5 Wafer-Level MEMS Packaging Based on Low-Temperature Solders: Case Study......Page 207
4.5.1 Case Study: In/Ag System of Noneutectic Composition......Page 208
4.5.2 Case Study: Eutectic InSn Solder for Cu-Based Metallization......Page 218
4.6 Summary and Future Outlook......Page 227
References......Page 228
5.1 Introduction......Page 234
5.2 Actuation Mechanisms and Integrated Micromachining Processes......Page 236
5.2.1 Electrostatic Actuation......Page 237
5.2.2 Thermal Actuation......Page 240
5.2.4 Piezoelectric Actuation......Page 244
5.2.5 Integrated Micromachining Processes......Page 246
5.3 Optical Switches......Page 249
5.3.1 Small-Scale Optical Switches......Page 250
5.3.2 Large-Scale Optical Switches......Page 258
5.4 Variable Optical Attenuators......Page 262
5.4.1 Early Development Work......Page 263
5.4.2 Surface-Micromachined VOAs......Page 265
5.4.3 DRIE-Derived Planar VOAs Using Electrostatic Actuators......Page 267
5.4.4 DRIE-Derived Planar VOAs Using Electrothermal (Thermal) Actuators......Page 277
5.4.5 3D VOAs......Page 279
5.4.6 VOAs Using Various Mechanisms......Page 283
5.5 Packaging, Testing, and Reliability Issues......Page 286
5.5.1 Manufacturability and Self-Assembly......Page 289
5.5.2 Case Study: VOAs......Page 294
5.5.3 Case Study: Optical Switches......Page 300
5.6 Summary and Future Outlook......Page 310
References......Page 311
6.2 3D Packaging......Page 322
6.3.2 Materials......Page 327
6.3.3 Boundary Conditions......Page 330
6.4.1 Creep Hysteresis Loops......Page 331
6.4.4 Shear-Creep-Strain Time-History......Page 332
6.4.5 Creep-Strain Energy-Density Range......Page 333
6.5.2 Test Setup and Procedures......Page 334
6.5.3 Test Results......Page 337
6.7 Appendix A: Package Deflection by Twyman-Green Interferometry Method......Page 339
6.7.1 Sample Preparation......Page 340
6.7.2 Test Setup and Procedure......Page 341
6.8 Appendix B: Package Deflection by Finite-Element Method......Page 342
6.9.1 Description of the Bolted Model......Page 345
6.9.2 Responses of the Bolted Photonic Switch......Page 347
References......Page 350
7.1 Introduction......Page 352
7.2 Bolometer Chip......Page 354
7.3 Thermal Optimization......Page 355
7.3.1 Final Temperature Stability Testing......Page 359
7.4 Structural Optimization of the Package......Page 360
7.5 Vacuum Packaging of Bolometer......Page 365
7.5.1 Ge Window......Page 367
7.6 Getter Attachment and Activation......Page 369
7.7 Outgassing Study in a Vacuum Package......Page 371
7.8.1 Package Testing......Page 372
7.8.2 Image Testing......Page 375
References......Page 377
8.1 Introduction......Page 378
8.2 Bio-MEMS Chip......Page 380
8.3.1 Microfluidic Cartridge......Page 382
8.3.2 Biocompatible Polymeric Materials......Page 384
8.4.2 Replication Technologies......Page 387
8.4.3 Overview of Existing DNA and RNA Extractor Biocartridges......Page 388
8.6 Assembly of PDMS Microfluidic Packages......Page 389
8.6.1 Microfluidic Package without Reservoirs......Page 391
8.6.2 Development of Reservoir and Valve......Page 395
8.7.1 Microfluidic Package with Self-Contained Reservoirs......Page 396
8.7.2 Pin-Valve Design......Page 399
8.7.3 Fluid Flow-Control Mechanism......Page 400
8.8.1 Substrate Fabrication......Page 402
8.9 Permeability of Material......Page 406
8.10 Thermocompression Bonding......Page 409
8.10.1 Bonding of PMMA to PMMA for the Channel Layer......Page 410
8.10.2 Polypropylene to PMMA for Reservoir and Channel Layer......Page 412
8.10.3 Tensile Test......Page 415
8.11.1 Fluid Testing......Page 416
8.11.2 Biologic Testing on a Biosample......Page 417
8.12.2 PCR Amplification......Page 419
References......Page 420
9.1 Introduction......Page 422
9.1.1 Review of Optical Coherence Tomography (OCT)......Page 423
9.2.2 Single-Mode Optical Fiber and GRIN Lens......Page 426
9.2.3 Upper Substrate......Page 428
9.3.1 Configuration of the Probe......Page 429
9.3.2 Optical Properties and Theories......Page 431
9.3.3 Evaluations of Parameters......Page 435
9.4.1 Optical Model of the Probe......Page 437
9.4.2 Effect of Mirror Curvature on Coupling Efficiency......Page 440
9.4.3 Effect of Lateral Tilt of a Flat Micromirror on a Curved Sample......Page 442
9.4.4 Effect of Vertical Tilt of a Flat Micromirror on a Curved Sample......Page 444
9.4.5 Effect of Vertical Tilt of a Flat Micromirror on a Flat Sample......Page 445
9.5.1 Fabrication of SiOB......Page 446
9.5.2 Probe Assembly......Page 447
9.5.3 Probe Housing......Page 450
9.6.2 Axial Scanning Test Result......Page 452
9.6.3 Probe Imaging......Page 454
9.6.4 Optical Efficiency Testing......Page 456
References......Page 458
10.1 Introduction......Page 460
10.2 Wafer-Level Package Requirements......Page 462
10.2.2 Package Structure......Page 463
10.2.3 Extraction Methodology of the Interconnection Characteristics......Page 467
10.3 Wafer-Level Packaging Process......Page 473
10.3.2 Method 2: TSV without Sacrificial Wafer......Page 475
10.3.3 Method 3: TSV with MEMS Wafer......Page 477
10.4 Wafer Separation Process......Page 483
10.4.1 Process Integration......Page 485
10.5 Sacrificial Wafer Removal......Page 487
10.6 Wafer-Level Vacuum Sealing......Page 489
10.7 Vacuum Measurement Using a MEMS Motion Analyzer......Page 492
10.8 Reliability Testing: Vacuum Maintenance......Page 494
10.9 Wafer-Level 3D Package for an Accelerometer......Page 496
References......Page 498
11.2.1 Design of Capacitive Switches......Page 500
11.2.3 Mechanical Design of RF MEMS Switches......Page 504
11.3.1 Surface Micromachining of RF MEMS Switches......Page 509
11.3.2 Bulk Micromachining of RF MEMS Switches......Page 513
11.4.2 Mechanical Performance......Page 514
11.6 Summary......Page 517
References......Page 518
12.2 RF MEMS Tunable Capacitors......Page 520
12.2.1 Analog Tuning of RF MEMS Capacitors......Page 521
12.2.2 Digital Tuning of RF MEMS Capacitors......Page 528
12.3 RF MEMS Tunable Band-Pass Filters......Page 529
12.3.1 Analog Tuning of a MEMS Band-Pass Filter......Page 530
12.3.2 Digital Tuning of an RF MEMS Filter......Page 531
12.4 Summary......Page 537
References......Page 538
13.2 Zero-Level Packaging......Page 540
13.2.1 Chip Capping......Page 541
13.2.2 Thin-Film Capping......Page 548
13.3 One-Level Packaging......Page 550
13.4 Reliability of Packaged RF MEMS Devices......Page 551
References......Page 553
A......Page 556
B......Page 557
C......Page 558
D......Page 559
E......Page 560
F......Page 561
H......Page 562
L......Page 563
M......Page 564
O......Page 567
P......Page 568
R......Page 569
S......Page 570
T......Page 573
V......Page 575
X......Page 576
Z......Page 577