The fundamentals needed to design and realize microwave and RF filters.Microwave and RF filters play an important role in communication systems and, owing to the proliferation of radar, satellite, and mobile wireless systems, there is a need for design methods that can satisfy the ever-increasing demand for accuracy, reliability, and shorter development times.Beginning with a brief review of scattering and chain matrices, filter approximations and synthesis, waveguides and transmission lines, and fundamental electromagnetic equations, the book then covers design techniques for microwave and RF filters operating across a frequency range from 1 GHz to 35 GHz.Each design chapter:Is dedicated to only one filter and is organized by the type of filter responseProvides several design examples, including the analysis and modeling of the structures discussed and the methodologies employedOffers practical information on the actual performance of the filters and common difficulties encountered during constructionConcludes with the construction technique, pictures of the inside and outside of the filter, and the measured performancesAdvanced Design Techniques and Realizations of Microwave and RF Filters is an essential resource for wireless and telecommunication engineers, as well as for researchers interested in current microwave and RF filter design practices. It is also appropriate as a supplementary textbook for advanced undergraduate courses in filter design.
Author(s): Pierre Jarry, Jacques Beneat
Edition: 1
Year: 2008
Language: English
Pages: 354
Tags: Приборостроение;Антенно-фидерные устройства;Устройства СВЧ антенн;
ADVANCED DESIGN TECHNIQUES AND REALIZATIONS OF MICROWAVE AND RF FILTERS......Page 4
CONTENTS......Page 8
Foreword......Page 16
Preface......Page 18
PART I MICROWAVE FILTER FUNDAMENTALS......Page 24
1.1 Introduction......Page 26
1.2.1 Definitions......Page 27
1.2.2 Computing the S Parameters......Page 29
1.3 ABCD Matrix of a Two-Port System......Page 33
1.3.1 ABCD Matrix of Basic Elements......Page 34
1.3.2 Cascade and Multiplication Property......Page 35
1.3.4 Impedance and Admittance Inverters......Page 37
1.3.5 ABCD-Parameter Properties......Page 40
1.5 Bisection Theorem for Symmetrical Networks......Page 41
References......Page 44
2.1 Introduction......Page 46
2.2 Ideal Low-Pass Filtering Characteristics......Page 47
2.3.1 Butterworth Function......Page 48
2.3.2 Chebyshev Function......Page 49
2.3.3 Elliptic Function......Page 50
2.3.4 Generalized Chebyshev (Pseudoelliptic) Function......Page 52
2.4.1 Bessel Function......Page 53
2.4.2 Rhodes Equidistant Linear-Phase Function......Page 54
2.5.1 General Synthesis Technique......Page 55
2.5.2 Normalized Low-Pass Ladders......Page 59
2.6.1 Impedance Scaling......Page 62
2.6.2 Frequency Scaling......Page 63
2.8.1 Low-Pass Prototypes......Page 64
2.8.2 Scaling Flexibility......Page 65
2.8.3 Bandpass Ladders......Page 67
2.8.4 Filter Examples......Page 68
References......Page 69
3.2.1 Rectangular Waveguides......Page 72
3.2.2 Rectangular Cavities......Page 75
3.3.1 Circular Waveguides......Page 76
3.3.2 Cylindrical Cavities......Page 78
3.4 Evanescent Modes......Page 79
3.5 Planar Transmission Lines......Page 80
3.6 Distributed Circuits......Page 83
3.7 Conclusions......Page 86
References......Page 87
4.1 Introduction......Page 90
4.2.1 General Design Steps......Page 91
4.3 Non-Minimum-Phase Symmetrical Response Microwave Filters......Page 93
4.3.1 General Design Steps......Page 94
4.3.3 Microwave Linear-Phase Filters......Page 96
4.4.1 General Design Steps......Page 97
4.4.2 Non-Minimum-Phase Asymmetrical Response Filter Examples......Page 100
4.5 Conclusions......Page 102
References......Page 103
PART II MINIMUM-PHASE FILTERS......Page 106
5.1 Introduction......Page 108
5.2.1 Capacitive-Gap Filter Structure......Page 109
5.2.2 Design Procedures......Page 110
5.2.3 Step-by-Step Design Example......Page 114
5.2.4 Filter Realizations......Page 116
5.3.1 Millimeter-Wave Technology......Page 118
5.3.2 Fifth-Order Chebyshev Capacitive-Gap Filter at 35 GHz......Page 119
5.4 Electromagnetic Characterization of SSS......Page 122
References......Page 125
6.1 Introduction......Page 128
6.2 Evanescent-Mode Waveguide Filters......Page 129
6.2.1 Scattering and ABCD Descriptions of the Structure......Page 131
6.2.2 Equivalent Circuit of the Structure......Page 133
6.2.3 Filter Design Procedure......Page 138
6.2.4 Design Examples and Realizations......Page 140
6.3 Folded Evanescent-Mode Waveguide Filters......Page 144
6.3.1 Scattering and ABCD Descriptions of the Additional Elements......Page 146
6.3.3 Design Examples and Realizations......Page 148
6.4 Conclusions......Page 150
References......Page 151
7.1 Introduction......Page 154
7.2 Interdigital Filters......Page 155
7.3.1 Prototype Circuit......Page 158
7.3.2 Equivalent Circuit......Page 160
7.3.3 Input and Output......Page 163
7.3.5 Frequency Transformation......Page 164
7.3.6 Physical Parameters of the Interdigital Filter......Page 165
7.4.1 Wideband Example......Page 168
7.4.2 Narrowband Example......Page 170
7.5 Realizations and Measured Performance......Page 171
7.6 Conclusions......Page 173
References......Page 174
8.2 Combline Filters......Page 176
8.3.1 Prototype Circuit......Page 179
8.3.2 Equivalent Circuit......Page 180
8.3.3 Input and Output......Page 182
8.3.5 Physical Parameters of the Combline Structure......Page 185
8.4 Design Example......Page 188
8.5 Realizations and Measured Performance......Page 191
8.6 Conclusions......Page 192
References......Page 193
PART III NON-MINIMUM-PHASE SYMMETRICAL RESPONSE FILTERS......Page 194
9.1 Introduction......Page 196
9.2 Generalized Interdigital Filter......Page 197
9.3.1 Minimum-Phase Functions with Linear Phase......Page 198
9.3.2 Non-Minimum-Phase Functions with Simultaneous Conditions on the Amplitude and Phase......Page 200
9.3.3 Synthesis of Non-Minimum-Phase Functions with Simultaneous Conditions on the Amplitude and Phase......Page 203
9.4.1 Even-Mode Equivalent Circuit......Page 205
9.4.2 Frequency Transformation......Page 209
9.4.3 Physical Parameters of the Interdigital Structure......Page 210
9.5 Design Example......Page 214
9.6 Realizations and Measured Performance......Page 217
9.7 Conclusions......Page 218
References......Page 220
10.1 Introduction......Page 222
10.3.1 Amplitude......Page 223
10.3.2 Delay......Page 224
10.3.3 Synthesis of the Low-Pass Prototype......Page 225
10.4.1 Matching the Coupling......Page 227
10.4.2 Selecting the Cavities......Page 230
10.4.3 Defining the Coupling......Page 231
10.5 Design Example......Page 233
10.6.1 Amplitude and Phase Performance......Page 236
10.6.2 Temperature Performance......Page 237
10.7 Conclusions......Page 238
References......Page 240
PART IV NON-MINIMUM-PHASE ASYMMETRICAL RESPONSE FILTERS......Page 242
11.1 Introduction......Page 244
11.3 Synthesis of Low-Pass Asymmetrical Generalized Chebyshev Filters......Page 245
11.3.1 In-Line Network......Page 248
11.3.2 Analysis of the In-Line Network......Page 249
11.3.3 Synthesis of the In-Line Network......Page 252
11.3.4 Frequency Transformation......Page 255
11.4 Design Method......Page 256
11.5 Design Example......Page 261
11.6 Realization of the CGCL Filter......Page 266
11.7 Conclusions......Page 267
References......Page 268
12.1 Introduction......Page 270
12.3 Synthesis of Low-Pass Asymmetrical Generalized Chebyshev Filters......Page 271
12.3.1 Fundamental Element......Page 272
12.3.2 Analysis of the In-Line Network......Page 273
12.3.3 Synthesis by Simple Extraction Techniques......Page 275
12.3.4 Frequency Transformation......Page 277
12.4.2 Optimization Approach......Page 279
12.5 Design Example......Page 285
12.6.1 Third-Order Filter with One Transmission Zero......Page 289
12.6.2 Fourth-Order Filter with Two Transmission Zeros......Page 291
12.7 Conclusions......Page 292
References......Page 293
13.1 Introduction......Page 296
13.2 Dual-Mode Cylindrical Waveguide Filters......Page 297
13.3.1 Synthesis From a Cross-Coupled Prototype......Page 298
13.3.2 Extracting the Elements from the Chain Matrix......Page 300
13.3.3 Coupling Graph and Frequency Transformation......Page 304
13.4.1 Rotation Matrix......Page 307
13.4.2 Cruciform Iris......Page 309
13.4.3 Physical Parameters of the Irises......Page 313
13.5.1 Fourth-Order Filter with One Transmission Zero on the Left......Page 315
13.5.2 Fourth-Order Filter with Two Ransmission Zeros on the Right......Page 316
13.5.3 Sixth-Order Filter with One Transmission Zero on the Right......Page 318
References......Page 319
14.1 Introduction......Page 322
14.2 Multimode Rectangular Waveguide Filters......Page 323
14.3.1 Genetic Algorithm......Page 325
14.3.2 Example......Page 331
14.4.1 Fourth-Order Filter with Two Transmission Zeros......Page 336
14.4.2 Seventh-Order Filter with Four Transmission Zeros......Page 339
14.4.3 Extension to a Tenth-Order Filter with Six Transmission Zeros......Page 341
References......Page 343
Appendix 1: Lossless Systems......Page 346
Appendix 2: Redundant Elements......Page 348
Appendix 3: Modal Analysis of Waveguide Step Discontinuities......Page 351
Appendix 4: Trisections with Unity Inverters on the Inside or on the Outside......Page 361
Appendix 5: Reference Fields and Scattering Matrices for Multimodal Rectangular Waveguide Filters......Page 363
Index......Page 376