There has been a dynamic development of control over the past 50 years. Many new methods have appeared. The methods have traditionally been presented in highly specialized books written for researchers or engineers with advanced degrees in control theory. These books have been very useful to advance the state of the art but are difficult, however, for an average engineer. It is thus highly desirable to present the industrially proven control methods to ordinary engineers working in industry. Advanced Control Unleashed provides a basis for assessing the benefits of advanced control. The book covers auto-tuning, model predictive control, optimization, estimators, neural networks, fuzzy control, simulators, expert systems, diagnostics, and performance assessment. It is written by four seasoned practitioners of control, having jointly more than 100 years of real industrial experience in the development and use of advanced control. The book is well positioned to provide the bridge over the infamous Gap between Theory and Practice in control. As an added bonus, the book includes a CD that helps bridge theoretical concepts and practical implementations by providing real DeltaV simulations and displays. This interactive CD offers practical design, simulation, and implementation examples that make key examples in the book come alive. Configuration and case files are supplied for a hands-on experience and PowerPoint files suitable for lectures on each unit are also included.
Author(s): Terrence L. Blevins, Gregory K. McMillan, Willy K. Wojsznis, Michael W. Brown
Publisher: ISA
Year: 2002
Language: English
Pages: 454
Cover Page......Page 1
Title Page......Page 2
ISBN 1556178158......Page 3
Dedication......Page 4
Acknowledgement......Page 10
About the Authors......Page 12
Foreword......Page 14
Table of Contents......Page 5
1. Introduction......Page 15
2.1.1.1 Measurement......Page 19
2.1.1.2 Final Element......Page 20
2.1.1.3 Effect on APC......Page 25
2.1.2 Opportunity Assessment......Page 26
2.1.3.1 Neutralization Process......Page 29
2.1.3.2 Distillation Process......Page 31
2.2.1 General Procedure......Page 34
2.2.2.1 Valve Selection......Page 40
2.2.2.2 Valve Installation......Page 45
2.2.2.3 The Variable-Speed Drive Alternative......Page 48
2.2.2.4 Measurement Selection......Page 49
2.2.2.5 Measurement Installation......Page 55
2.2.2.6 Open Loop Response......Page 59
2.2.2.7 PID Controller Tuning......Page 65
2.2.2.8 Cascade Control......Page 81
2.2.2.9 Feedforward Control......Page 84
2.2.3 Rules of Thumb......Page 88
2.3.1 Process Time Constants and Gains......Page 90
2.3.2 Process Time Delay......Page 93
2.3.3 Ultimate Gain and Period......Page 94
2.3.4 Peak and Integrated Error......Page 96
2.3.6 Dead Time from Valve Dead Band......Page 98
2.4 Nomenclature......Page 99
2.5 References......Page 100
3.1.1 Overview......Page 103
3.1.2 Opportunity Assessment......Page 108
3.1.3.1 Global Production Maximum......Page 117
3.1.3.3 Shifting Bottlenecks......Page 118
3.2.1 General Procedure......Page 120
3.2.2.1 Neutralizer......Page 122
3.2.2.2 Paper Machine......Page 125
3.2.2.3 Reactor......Page 127
3.2.2.4 Popular Excuses......Page 128
3.3.3 Rules of Thumb......Page 129
3.3 References......Page 130
4.1.1 Overview......Page 133
4.1.2 Opportunity Assessment......Page 135
4.1.3.1 Control Utilization and Its Impact......Page 139
4.1.3.2 Control Variability......Page 140
4.1.3.4 Caster Monitoring......Page 141
4.2.1 General Procedure......Page 143
4.2.2.2 Loop Not in Normal Mode......Page 145
4.2.2.5 High Variability......Page 146
4.2.2.6 Batch Control......Page 148
4.2.2.7 Multivariate Analysis......Page 152
4.2.2.8 Scores Plot......Page 155
4.2.2.10 Contribution Plot......Page 156
4.2.3 Rules of Thumb......Page 157
4.2.4 Guided Tour......Page 158
4.3 Theory......Page 161
4.3.1 Using Statistics for Control Performance Evaluation......Page 164
4.3.2 Extending the Concept to the Multi-Variable Environment......Page 167
4.3.3.1 Abnormal Inputs......Page 168
4.3.3.3 Incorrect Mode......Page 169
4.3.4 Diagnostic Tools......Page 170
4.3.4.1 System Communication Model......Page 171
4.4 References......Page 174
5.1.1 Overview......Page 177
5.1.2 Opportunity Assessment......Page 179
5.1.3.1 Alarm Screening......Page 180
5.1.3.2 Fault Detection......Page 181
5.2.1 General Procedure......Page 182
5.2.2 Application Details......Page 183
5.2.2.3 Capture Expert Knowledge......Page 184
5.2.3 Rules of Thumb......Page 185
5.2.4 Guided Tour......Page 187
5.3.1 Introduction to Expert Systems......Page 191
5.3.2 Rules......Page 192
5.3.3 Inference Engine......Page 194
5.3.4.1 Other Structures......Page 195
5.4 References......Page 196
6.1.1 Overview......Page 197
6.1.2 Opportunity Assessment......Page 199
6.1.3.1 Liquid Flow Control......Page 201
6.1.3.3 Static Mixer Concentration Control......Page 202
6.1.3.4 Continuous Reactor Pressure Control......Page 203
6.1.3.6 Continuous Recycle Tank and Reactor Level Control......Page 204
6.1.3.7 Batch Reactor Temperature Control......Page 206
6.1.3.9 Continuous Column Temperature Control......Page 207
6.1.3.10 Continuous Distillate Receiver Level Control......Page 208
6.1.3.11 Furnace Pressure Control......Page 209
6.1.3.12 Boiler Drum Level Control......Page 210
6.2.1 General Procedure......Page 211
6.2.2.1 Selection of the Proper Test Conditions......Page 214
6.2.2.2 Selection of the Proper Tuning Method (Rule)......Page 215
6.2.3.1 Rules of Thumb on Step Size......Page 216
6.2.3.2 Rules of Thumb on Tuning Methods......Page 218
6.2.4 Guided Tour......Page 220
6.3.1 Introduction to Auto Tuners......Page 222
6.3.2.1 Process Testing......Page 224
6.3.2.2 Evaluation of Process Characteristics......Page 226
6.3.2.3 Calculation of PID Controller Parameters......Page 227
6.3.2.4 Developing The Process Model......Page 230
6.3.3 Model Based Tuning......Page 232
6.3.3.1 Self-Regulating Process......Page 233
6.3.3.2 Integrating Process......Page 234
6.3.4 Robustness Based Tuning......Page 235
6.3.5 Adaptive Control......Page 239
6.3.5.1 Model-Free Adaptive Tuning......Page 240
6.3.5.2 Model-Based Adaptive Tuning......Page 245
6.3.5.3 Model Switching Adaptation in the Time Domain......Page 246
6.3.5.4 Discrete Fourier Transform Adaptation Technique......Page 250
6.4 References......Page 251
7.1.1 Overview......Page 253
7.1.3.2 Moisture Control......Page 254
7.2.1 General Procedure......Page 255
7.2.3 Guided Tour......Page 256
7.3.1 Introduction to Fuzzy Logic Control......Page 258
7.3.2.1 Fuzzification......Page 261
7.3.2.2 Fuzzy Logic Inference Rules......Page 262
7.3.2.3 Defuzzification......Page 264
7.3.3.1 Membership Functions......Page 265
7.3.3.2 Fuzzy Logic Inference Rules......Page 267
7.3.4 Fuzzy Logic Control Nonlinear PI Relationship......Page 268
7.3.5 FPID and PID Relations......Page 271
7.3.6 Automation of Fuzzy Logic Controller Commissioning......Page 272
7.4 References......Page 273
8.1.1 Overview......Page 275
8.1.1.2 Neural Networks......Page 276
8.1.2.1 Dynamic Linear Estimator......Page 277
8.1.2.2 Neural Network......Page 278
8.1.3.1 Distillation Process......Page 279
8.1.4.1 Soft Sensor Tracking an Online Analyzer......Page 283
8.1.4.3 Soft Sensor with No Feedback Element......Page 284
8.1.4.4 Continuous Digester......Page 285
8.1.4.5 Fermentation Process......Page 286
8.2.1 General Procedure......Page 288
8.2.1.1 Dynamic Linear Estimator......Page 290
8.2.1.2 Neural Network......Page 292
8.2.2.1 Dynamic Linear Estimator......Page 293
8.2.2.2 Neural Network......Page 296
8.2.4 Guided Tour......Page 303
8.3.1 Dynamic Linear Estimator......Page 308
8.3.2 Neural Networks......Page 310
8.3.2.1 Data Collection......Page 311
8.3.2.2 Identification of Input Delay......Page 312
8.3.2.3 Input Sensitivity......Page 313
8.3.2.4 Determining Input Weights......Page 314
8.3.2.6 Correction for Process Changes......Page 316
8.3.2.7 State-of-the-Art Implementation......Page 317
8.4 References......Page 319
9.1.1 Overview......Page 321
9.1.2 Opportunity Assessment......Page 324
9.1.3.1 Distillation Tower Control......Page 330
9.1.3.2 Evaporator Control......Page 340
9.1.3.4 Rotary Kiln Control......Page 341
9.1.3.5 Variable-Dead Time Bleach Plant Control......Page 344
9.1.3.6 MPC for Processes with Varying Delay......Page 345
9.1.3.7 Addressing Mixed Dynamics......Page 348
9.1.3.8 Batch Reactor Control......Page 350
9.2.1 General Procedure......Page 351
9.2.2.1 Process Analysis......Page 353
9.2.2.2 Process Testing......Page 356
9.2.2.3 Process Model Development......Page 358
9.2.2.4 Controller Design......Page 361
9.2.2.5 MPC Controller Testing in Simulation......Page 363
9.2.2.6 MPC Commissioning/Operation......Page 365
9.2.3 Rules of Thumb......Page 367
9.2.4 Guided Tour......Page 369
9.3 Theory......Page 376
9.3.1 The Basics of Process Modeling......Page 378
9.3.2 Identifying the Process Model......Page 381
9.3.3 Unconstrained Model Predictive Control......Page 383
9.3.4.1 Simple Constraints Handling......Page 387
9.3.4.2 Integrated Optimization: Combining Constraints Handling, Optimization, and Model Predictive Control......Page 391
9.4 References......Page 395
10.1.1 Overview......Page 397
10.1.2 Opportunity Assessment......Page 400
10.1.3.1 Failure Handling......Page 401
10.1.3.2 Control Response......Page 402
10.2.1 General Procedure......Page 403
10.2.2 Online Adaptation......Page 407
10.2.3 Application Detail......Page 409
10.2.4 Rules of Thumb......Page 413
10.2.5 Guided Tour......Page 414
10.3 Theory......Page 417
References......Page 422
1. Increase Benefits in All Areas......Page 423
3. Reduce Energy and Utilities......Page 424
6. Reduce Maintenance Cost......Page 425
10. Reduce Shutdowns and Upsets......Page 426
11. Reduce Cycle Time......Page 427
12. Avoid Costs for Other Investments......Page 428
Appendix B: Batch-to-Continuous Transition......Page 429
Appendix C: Definitions......Page 433
Appendix D: Top 20 Mistakes......Page 439
C......Page 445
D......Page 446
F......Page 447
I......Page 448
M......Page 449
P......Page 450
R......Page 451
S......Page 452
T......Page 453
Z......Page 454