Advanced Control for Constrained Processes and Systems

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Provides a unified practically orientated treatment to many constrained control paradigms-Helps to reduce the gap between the available constrained control literature and industrial applications. Contents: Constraints in feedback systems. Dealing with constraints in SISO control. Some practical case studies. Relevant tools for dynamic decoupling. Constrained dynamic decoupling. Improving decoupling in decentralised control. Partial decoupling and non-minimum phase systems. MIMO bumpless transfer.

Author(s): Fabricio Garelli, Ricardo J. Mantz, Hernán de Battista
Series: IET Control Engineering Series 75
Publisher: The Institution of Engineering and Technology
Year: 2011

Language: English
Pages: x+214

Advanced Control for Constrained Processes and Systems......Page 4
Contents......Page 8
1.1 Motivations......Page 12
1.2 Types of constraints......Page 13
1.2.1 Physical limits......Page 14
1.2.3 Dynamic restrictions......Page 15
1.3.1 Controller windup......Page 16
1.3.2 Plant windup......Page 18
1.3.3 Control directionality problem......Page 20
1.4 Other constraint implications......Page 21
1.5 Different approaches to constrained control......Page 23
1.6 Book philosophy......Page 24
1.7 Short outline of the main problems to be addressed......Page 25
2.1 Introduction......Page 28
2.3.1 Basic idea for biproper systems......Page 29
2.3.2 Illustrative example......Page 32
2.4 Biproper SMRC: features and analysis......Page 34
2.4.1.1 Sliding mode description......Page 35
2.4.1.2 Necessary conditions for SM establishment......Page 36
2.4.1.3 Continuous equivalent control......Page 37
2.4.1.5 SM reduced dynamics......Page 38
2.4.2.2 Necessary condition for SMRC......Page 39
2.4.2.4 Necessary and sufficient condition for SMRC......Page 40
2.4.2.6 Condition for transient SMRC operation......Page 41
2.4.3.1 Chattering......Page 42
2.5 Strictly proper SMRC......Page 43
2.5.1 Normal form......Page 44
2.5.2 Method reformulation......Page 45
2.5.2.1 Reduced and robust SMRC dynamics......Page 46
2.5.3.1 Output or state limiter for a closed-loop system......Page 47
2.5.3.2 Prevention of plant windup......Page 48
2.5.3.3 Constrained unstable system......Page 49
2.6.1 Geometrical interpretation of SM......Page 53
2.6.2 Geometric invariance via SMRC......Page 55
2.6.3 SMRC in strictly proper non-linear systems......Page 58
2.7 Robustness properties......Page 59
2.7.1 SM existence domain......Page 60
2.7.2 SM dynamics......Page 62
3.1.1 Brief introduction to the problem......Page 64
3.1.2 Pitch actuator and control......Page 66
3.1.3 SMRC compensation for actuator constraints in the pitch control loop......Page 67
3.1.4.1 System description......Page 68
3.2 Clean hydrogen production plant......Page 70
3.2.1 Brief introduction to the problem......Page 72
3.2.2.1 The plant......Page 73
3.2.2.2 Conventional MPPT control scheme......Page 76
3.2.3 SMRC algorithm to deal with electrolyser constraints......Page 77
3.2.4.1 Maximum power tracking control......Page 78
3.2.4.2 Power conditioning via SMRC......Page 79
3.3.1 Brief introduction to the problem......Page 81
3.3.2 Classical control scheme for robotic path tracking......Page 82
3.3.3 Tracking speed autoregulation technique......Page 84
3.3.4 Application to a 2R manipulator......Page 86
3.4.2 Process model......Page 91
3.4.3 Reference seeking for overflow avoidance......Page 93
3.4.4 Simulations......Page 95
4.1.1.1 State-space models......Page 98
4.1.2 Multivariable poles and zeros......Page 99
4.1.3 Closed-loop transfer matrices......Page 101
4.2 MIMO controller parameterisation and approximate inverses......Page 103
4.2.1 Stabilising controller parameterisation......Page 104
4.2.2 Internal model control......Page 105
4.2.3 Interactor matrices......Page 106
4.2.3.1 Constructing interactor matrices......Page 108
4.3 Dynamic decoupling of MIMO systems......Page 110
4.3.1 Minimum phase systems......Page 111
4.3.2 Non-minimum phase systems......Page 113
4.3.3 Unstable systems......Page 117
4.4 Performance limitations in non-minimum phase systems......Page 118
5.1 Introduction......Page 122
5.2 Control directionality changes......Page 123
5.3.1 Method formulation......Page 126
5.3.3 SMRC dynamics......Page 128
5.3.4.1 Disturbance rejection......Page 131
5.3.4.2 Behaviour of the whole system......Page 132
5.4 Minimum-phase example......Page 133
5.5.1 Revisiting Example 1.3......Page 135
5.5.2 Sugar cane crushing station......Page 136
6.1.1 Architecture description......Page 142
6.1.2 Interaction measure......Page 143
6.1.3 Control structure selection: the TITO case......Page 145
6.1.4 Decentralised integral controllability......Page 148
6.2 Interaction effects on multiloop strategies......Page 150
6.3.1 Control scheme......Page 154
6.3.2 Switching law......Page 156
6.3.3 Output dynamics during conditioning......Page 158
6.3.4 Behaviour in presence of output disturbances......Page 159
6.4 Two-degrees of freedom PID controller with adaptive set-point weighting......Page 160
6.5 Case study: Quadruple tank......Page 161
6.5.1 Plant model analysis......Page 162
6.5.2 Interactions limits in non-minimum phase setting......Page 166
6.6 Delay example: catalytic reactor......Page 172
7.1 Some introductory comments......Page 174
7.2.1 Algebraic interpolation constraint......Page 175
7.2.2 Inverse response on a particular output......Page 178
7.4 Partial decoupling with bounded interactions via SMRC......Page 181
7.5 Numerical example......Page 183
7.6 Case study: quadruple tank......Page 186
8.1 Introduction......Page 192
8.2 Switching at the plant input......Page 193
8.3 A simple SMRC solution for SISO systems......Page 194
8.4.1 Some concepts on collective sliding modes......Page 196
8.4.2 A MIMO bumpless algorithm......Page 199
8.4.2.1 Reaching condition......Page 200
8.4.2.2 Hidden SM dynamics......Page 201
8.5.1 Manual–automatic switching......Page 202
8.5.2 Automatic–automatic commutation......Page 204
References......Page 208
Index......Page 218