Advanced Control Engineering provides a complete course in control engineering for undergraduates of all technical disciplines. Starting with a basic overview of elementary control theory this text quickly moves on to a rigorous examination of more advanced and cutting edge date aspects such as robust and intelligent control, including neural networks and genetic algorithms. With examples from aeronautical, marine and many other types of engineering, Roland Burns draws on his extensive teaching and practical experience presents the subject in an easily understood and applied manner. Control Engineering is a core subject in most technical areas. Problems in each chapter, numerous illustrations and free Matlab files on the accompanying website are brought together to provide a valuable resource for the engineering student and lecturer alike. Complete Course in Control EngineeringReal life case studiesNumerous problems
Author(s): Roland Burns
Edition: 1st
Publisher: Butterworth-Heinemann
Year: 2001
Language: English
Pages: 464
Front Cover......Page 1
Advanced Control Engineering......Page 4
Copyright Page......Page 5
Contents......Page 6
Preface and acknowledgements......Page 13
1.1 Historical review......Page 16
1.2 Control system fundamentals......Page 18
1.3 Examples of control systems......Page 21
1.4 Summary......Page 25
2.2 Simple mathematical model of a motor vehicle......Page 28
2.3 More complex mathematical models......Page 29
2.4 Mathematical models of mechanical systems......Page 30
2.5 Mathematical models of electrical systems......Page 36
2.6 Mathematical models of thermal systems......Page 40
2.7 Mathematical models of fluid systems......Page 42
2.8 Further problems......Page 46
3.1 Introduction......Page 50
3.2 Laplace transforms......Page 51
3.3 Transfer functions......Page 54
3.4 Common time domain input functions......Page 56
3.5 Time domain response of first-order systems......Page 58
3.6 Time domain response of second-order systems......Page 64
3.7 Step response analysis and performance specification......Page 70
3.8 Response of higher-order systems......Page 73
3.9 Further problems......Page 75
4.1 Closed-loop transfer function......Page 78
4.2 Block diagram reduction......Page 79
4.3 Systems with multiple inputs......Page 84
4.4 Transfer functions for system elements......Page 86
4.5 Controllers for closed-loop systems......Page 96
4.6 Case study examples......Page 107
4.7 Further problems......Page 119
5.1 Stability of dynamic systems......Page 125
5.2 The Routh–Hurwitz stability criterion......Page 127
5.3 Root-locus analysis......Page 133
5.4 Design in the s-plane......Page 147
5.5 Further problems......Page 156
6.1 Frequency domain analysis......Page 160
6.2 The complex frequency approach......Page 162
6.3 The Bode diagram......Page 166
6.4 Stability in the frequency domain......Page 176
6.5 Relationship between open-loop and closed-loop frequency response......Page 187
6.6 Compensator design in the frequency domain......Page 193
6.7 Relationship between frequency response and time response for closed-loop systems......Page 206
6.8 Further problems......Page 208
7.1 Microprocessor control......Page 213
7.2 Shannon's sampling theorem......Page 215
7.3 Ideal sampling......Page 216
7.4 The z-transform......Page 217
7.5 Digital control systems......Page 225
7.6 Stability in the z-plane......Page 228
7.7 Digital compensator design......Page 235
7.8 Further problems......Page 244
8.1 The state-space-approach......Page 247
8.2 Solution of the state vector differential equation......Page 254
8.3 Discrete-time solution of the state vector differential equation......Page 259
8.4 Control of multivariable systems......Page 263
8.5 Further problems......Page 281
9.1 Review of optimal control......Page 287
9.2 The Linear Quadratic Regulator......Page 289
9.3 The linear quadratic tracking problem......Page 295
9.4 The Kalman filter......Page 299
9.5 Linear Quadratic Gaussian control system design......Page 303
9.6 Robust control......Page 314
9.7 H2- and H∞- optimal control......Page 320
9.8 Robust stability and robust performance......Page 321
9.9 Multivariable robust control......Page 329
9.10 Further problems......Page 336
10.1 Intelligent control systems......Page 340
10.2 Fuzzy logic control systems......Page 341
10.3 Neural network control systems......Page 362
10.4 Genetic algorithms and their application to control system design......Page 380
10.5 Further problems......Page 388
Appendix 1. Control System Design Using Matlab......Page 395
Appendix 2. Matrix Algebra......Page 439
References and further reading......Page 443
Index......Page 448