Author(s): Leonard F. Richardson
Publisher: Wiley-Interscience
Year: 2008
Language: English
Pages: 417
Tags: Математика;Функциональный анализ;
Contents......Page 10
Preface......Page 16
Acknowledgments......Page 22
Introduction......Page 24
PART I ADVANCED CALCULUS IN ONE VARIABLE......Page 30
1.1 The Real Number System......Page 32
Exercises......Page 36
1.2 Limits of Sequences & Cauchy Sequences......Page 37
Exercises......Page 41
1.3 The Completeness Axiom and Some Consequences......Page 42
Exercises......Page 47
1.4 Algebraic Combinations of Sequences......Page 48
Exercises......Page 50
1.5 The Bolzano…Weierstrass Theorem......Page 51
1.6 The Nested Intervals Theorem......Page 53
Exercises......Page 55
1.7 The Heine…Borel Covering Theorem......Page 56
Exercises......Page 59
1.8 Countability of the Rational Numbers......Page 60
Exercises......Page 64
Exercises......Page 66
2.1 Limits of Functions......Page 68
Exercises......Page 72
2.2 Continuous Functions......Page 75
Exercises......Page 78
2.3 Some Properties of Continuous Functions......Page 79
Exercises......Page 82
2.4 Extreme Value Theorem and Its Consequences......Page 84
Exercises......Page 89
2.5 The Banach Space C[a,b]......Page 90
Exercises......Page 95
Exercises......Page 96
3.1 Definition and Basic Properties......Page 98
Exercises......Page 103
3.2 The Darboux Integrability Criterion......Page 105
Exercises......Page 110
3.3 Integrals of Uniform Limits......Page 112
Exercises......Page 116
3.4 The Cauchy…Schwarz Inequality......Page 119
Exercises......Page 122
Exercises......Page 124
4.1 Derivatives and Differentials......Page 128
Exercises......Page 132
4.2 The Mean Value Theorem......Page 134
Exercises......Page 138
4.3 The Fundamental Theorem of Calculus......Page 139
Exercises......Page 141
4.4 Uniform Convergence and the Derivative......Page 143
Exercises......Page 145
4.5 Cauchy's Generalized Mean Value Theorem......Page 146
Exercises......Page 150
4.6 Taylor's Theorem......Page 151
Exercises......Page 154
Exercises......Page 155
5.1 Series of Constants......Page 156
Exercises......Page 161
5.2 Convergence Tests for Positive Term Series......Page 163
Exercises......Page 166
5.3 Absolute Convergence and Products of Series......Page 167
Exercises......Page 175
5.4 The Banach Space l1 and Its Dual Space......Page 177
Exercises......Page 182
5.5 Series of Functions: The Weierstrass M-Test......Page 183
Exercises......Page 186
5.6 Power Series......Page 187
Exercises......Page 190
5.7 Real Analytic Functions and C(infinity) Functions......Page 191
Exercises......Page 196
5.8 Weierstrass Approximation Theorem......Page 198
Exercises......Page 202
Exercises......Page 203
PART II ADVANCED TOPICS IN ONE VARIABLE......Page 206
6 Fourier Series......Page 208
6.1 The Vibrating String and Trigonometric Series......Page 209
Exercises......Page 212
6.2 Euler's Formula and the Fourier Transform......Page 213
Exercises......Page 219
6.3 Bessel's Inequality and l2......Page 221
Exercises......Page 225
6.4 Uniform Convergence & Riemann Localization......Page 226
Exercises......Page 233
6.5 L2-Convergence & the Dual of l2......Page 234
Exercises......Page 237
Exercises......Page 241
7 The Riemann…Stieltjes Integral......Page 244
7.1 Functions of Bounded Variation......Page 245
Exercises......Page 249
7.2 Riemann…Stieltjes Sums and Integrals......Page 252
Exercises......Page 256
7.3 Riemann…Stieltjes Integrability Theorems......Page 257
Exercises......Page 259
7.4 The Riesz Representation Theorem......Page 260
Exercises......Page 268
Exercises......Page 270
PART III ADVANCED CALCULUS IN SEVERAL VARIABLES......Page 272
8.1 Euclidean Space as a Complete Normed Vector Space......Page 274
Exercises......Page 278
8.2 Open Sets and Closed Sets......Page 281
Exercises......Page 283
8.3 Compact Sets......Page 285
Exercises......Page 287
8.4 Connected Sets......Page 288
Exercises......Page 290
Exercises......Page 292
9.1 Limits of Functions......Page 294
Exercises......Page 297
9.2 Continuous Functions......Page 299
Exercises......Page 301
9.3 Continuous Image of a Compact Set......Page 303
Exercises......Page 305
9.4 Continuous Image of a Connected Set......Page 307
Exercises......Page 308
Exercises......Page 309
10.1 Linear Transformations and Norms......Page 312
Exercises......Page 315
10.2 Differentiable Functions......Page 318
Exercises......Page 324
10.3 The Chain Rule in Euclidean Space......Page 327
10.3.1 The Mean Value Theorem......Page 329
10.3.2 Taylor's Theorem......Page 330
Exercises......Page 332
10.4 Inverse Functions......Page 334
Exercises......Page 338
10.5 Implicit Functions......Page 340
Exercises......Page 346
10.6 Tangent Spaces and Lagrange Multipliers......Page 351
Exercises......Page 356
Exercises......Page 357
11.1 Definition of the Integral......Page 360
Exercises......Page 365
11.2 Lebesgue Null Sets and Jordan Null Sets......Page 367
Exercises......Page 370
11.3 Lebesgue's Criterion for Riemann Integrability......Page 371
Exercises......Page 373
11.4 Fubini's Theorem......Page 375
Exercises......Page 378
11.5 Jacobian Theorem for Change of Variables......Page 380
Exercises......Page 384
Exercises......Page 386
A.1 Terminology and Symbols......Page 388
A.2 Paradoxes......Page 392
Problem Solutions......Page 394
References......Page 408
Index......Page 410