Advanced Calculus: A Text Upon Select Parts of Differential Calculus, Differential Equations, Integral Calculus, Theory of Functions, With Numerous Exercises

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

An introduction to partial differentiation, complex numbers and vectors, differential equations, infinite integrals, calculus of variations, infinite series, functions of complex variable, elliptic functions & Integrals, functions of real variables, and other important topics in advanced mathematics.

Author(s): Edwin Bidwell Wilson
Edition: 1
Publisher: Ginn and company
Year: 1911

Language: English
Pages: 581
City: Boston, New York
Tags: Mathematical Analysis

C O N T E N T S
INTRODUCTORY REVIEW


CHAPTER I
REVIEW OF FUNDAMENTAL RULES

SECTION
1. On differentiation . . . . . . . . . . 1
4. Logarithmic, exponential, and hyperbolic functions . . . 4
6. Geometric properties of the derivative . . . . . . 7
8. Derivatives of higher order . . . . . . . . 11
10. The indefinite integral . . . . . . . . . 15
13. Aids to integration . . . . . . . . . . 18
16. Definite integrals . . . . . . . . . . 24

CHAPTER II
REVIEW OF FUNDAMENTAL THEORY

18. Numbers and limits . . . . . . . . . 33
21. Theorems on limits and on sets of points . . . . . 37
23. Real functions of a real variable . . . . . . . 40
26. The derivative . . . . . . . . . . 45
28. Summation and integration . . . . . . . . 50

PART I. DIFFERENTIAL CALCULUS

CHAPTER III
TAYLOR’S FORMULA AND ALLIED TOPICS

31. Taylor's Formula . . . . . . . . . . 55
33. Indeterminate forms, infinitesimals, infinities . . . . . 81
36. Infinitesimal-analysis . . . . . . . . . 68
40. Some differential geometry . . . . . . . . 78

CHAPTER IV _
PARTIAL DIFFERENTIATION; EXPLICIT FUNCTIONS

43. Functions of two or more variables . . . . . . 87
46. First partial derivatives . . . . . . . . . 93
50. Derivatives of higher order . . . . . . . . 102
54. Taylor’s Formula and applications . . . . . . . 112

CHAPTER V
PARTIAL DIFFERENTIATION; IMPLICIT FUNCTIONS

56. The simplest case; F(X,Y) = 0 . . . . . . . 117
59. More general cases of implicit functions . . . . . 122
62. Functional determinants or Jacobians . . . . . . 129
65. Envelopes of curves and surfaces . . . . . . . 135
68. More differential geometry . . . . . . . . 143

CHAPTER VI
COMPLEX NUMBERS AND VECTORS

70. Operators and operations . . . . . . . . 149
71. Complex numbers . . . . . . . . . . 153
73. Functions of a complex variable . . . . . . . 157
75. Vector sums and products . . . . . . . . 163
77. Vector differentiation . . . . . . . . . 170

PART II. DIFFERENTIAL EQUATIONS

CHAPTER VII
GENERAL INTRODUCTION TO DIFFERENTIAL EQUATIONS

81. Some geometric problems . . . . . . . . 179
83. Problems in mechanics and physics . . . . . . 184
85. Linear element and differential equation . . . . . 191
87. The higher derivatives; analytic approximations . . . . 197

CHAPTER VIII
THE COMMONER ORDINARY DIFFERENTIAL EQUATIONS

89. Integration by separating the variables . . . . . . 203
91. Integrating factors . . . . . . . . . 207
95. Linear equations with constant coefficients . . . . . 214
98. Simultaneous linear equations with constant coefficients . . 223
CONTENTS vii

CHAPTER IX
ADDITIONAL TYPES OF ORDINARY EQUATIONS

100. Equations of the first order and higher degree . . . . 228
102. Equations of higher order . . . . . . . . 234
104. Linear differential equations . . . . . . . 240
107. The cylinder functions . . . . . . . . . 247

CHAPTER X
DIFFERENTIAL EQUATIONS IN MORE THAN TWO VARIABLES

109. Total differential equations . . . . . . . . 254
111. Systems of simultaneous equations . . . . . . 260
113. Introduction to partial differential equations . . . . 267
116. Types of partial differential equations . . . . . . 273

PART III. INTEGRAL CALCULUS

CHAPTER XI
0N SIMPLE INTEGRALS

118. Integrals containing a parameter . . . . . . . 281
121. Curvilinear or line integrals . . . . . . . . 288
124. Independency of the path . . . . . . . . 298
127. Some critical comments . . . . . . . . 308

CHAPTER XII
ON MULTIPLE INTEGRALS

129. Double sums and double integrals . . . . . . 315
133. Triple integrals and change of variable . . . . . 326
135. Average values and higher integrals . . . . . . 332
137. Surfaces and surface integrals . . . . . . . 338

CHAPTER XIII
ON INFINITE INTEGRALS

140. Convergence and divergence . . . . . . . . 352
142. The evaluation of infinite integrals . . . . . . 360
144. Functions defined by infinite integrals . . . . . . 368

CHAPTER XIV
SPECIAL FUNCTIONS DEFINED BY INTEGRALS

147. The Gamma and Beta functions . . . . . . . 378
150. The error function . . . . . . . . . 386
153. Bessel functions . . . . . . . . . . 393

CHAPTER XV
THE CALCULUS OF VARIATIONS

155. The treatment of the simplest case . . . . . . 400
157. Variable limits and constrained minima . . . . . . 404
159. Some generalizations . . . . . . . . . . 409

PART IV. THEORY OF FUNCTIONS

CHAPTER XVI
INFINITE SERIES

162. Convergence or divergence of series . . . . . . 419
165. Series of functions . . . . . . . . . 430
168. Manipulation of series . . . . . . . . . 440

CHAPTER XVII
SPECIAL INFINITE DEVELOPMENTS

171. The trigonometric functions . . . . . . . . 453
173. Trigonometric or Fourier series . . . . . . . 458
175. The Theta functions . . . . . . . . . 467

9 CHAPTER XVIII
FUNCTIONS OF A COMPLEX VARIABLE

178. General theorems . . . . . . . . . . 476
180. Characterization of some functions . . . . . . 482
183. Conformal representation . . . . . . . . 490
185. Integrals and their inversion . . . . . . . . 496

CHAPTER XIX
ELLIPTIC FUNCTIONS AND INTEGRALS

187. Legendre's integrals I and its inversion . . . . . . 503
190. Legendre's integrals II and III . . . . . . . 511
192. Weierstrass's integrals and its inversion . . . . . . 517

CHAPTER XX .
FUNCTIONS OF REAL VARIABLES

194. Partial differential equations of physics . . . . . 624
196. Harmonic functions; general theorems . . . . . 530
198. Harmonic functions; special theorems . . . . . . 537
201. The potential integrals . . . . . . . . . 546
BOOK LIST . . . . . . . . . . . 565
INDEX- . . . . . . . . . . . . 657