Adaptive Motion of Animals and Machines

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The principles of adaptation to various environments have not yet been clarified. Furthermore, autonomous adaptation remains unsolved and a seriously difficult problem in robotics. Apparently, the adaptation ability shown by animals and that needed by robots in the real world cannot be explained or realized by one single function in a control system and mechanism. That is, adaptation in motion is induced at every level in a wide spectrum from the central neural system to the musculoskeletal system. This book contains the papers selected carefully from the symposium AMAM2003 particularly concerning adaptation in locomotion from the viewpoint of robotics and neurophysiology. Due to this restriction in topics adopted, we expect that this book will efficiently provide good information for scientists and engineers, which is useful to discuss the principles and mechanisms underlying animals' adaptation under unstructured environment .

Author(s): Hiroshi Kimura, Kazuo Tsuchiya, Akio Ishiguro, Hartmut Witte (Editors)
Edition: 1
Year: 2005

Language: English
Pages: 280

Contents......Page 7
Part 1: Motion Generation and Adaptation in Animals......Page 13
Overview of Adaptive Motion in Animals and Its Control Principles Applied to Machines......Page 14
1 Introduction......Page 15
2 Results......Page 16
3 Perspective......Page 24
1 Walking: a nontrivial behavior......Page 27
3 Control of the selector network: coordination between legs......Page 29
4 Control of the swing movement......Page 31
5 Control of the stance movement and coordination of supporting legs......Page 34
6 Conclusion......Page 36
1 Introduction......Page 40
2 Motion control system......Page 41
3 Central pattern generator model......Page 44
5 Discussion......Page 47
2 CPG and muscle activation......Page 50
3 Sensory feedback......Page 54
4 Summary and conclusions......Page 58
1 Introduction......Page 61
2 Locomotor control CNS mechanisms including anticipatory and reactive control mechanisms......Page 62
3 Emergence, acquisition and refinement of Bp locomotion in Juvenile Japanese monkeys......Page 64
4 Common and different control properties of Qp and Bp locomotion......Page 66
5 Similarity and difference in the kinematics of lower limbs during Bp walking between our monkey model and the human......Page 67
6 Summary and discussion......Page 68
Part 2: Adaptive Mechanics......Page 74
Interactions between Motions of the Trunk and the Angle of Attack of the Forelimbs in Synchronous Gaits of the Pika......Page 75
2 Preliminiary question: do pikas prefer one forelimb as trailing limb?......Page 76
3 Trajectories of the centre of mass of pikas in half-bound gait......Page 78
4 Does the angle of attack couple with speed?......Page 80
5 Conclusions......Page 81
1 Introduction......Page 84
2 Bounding experiments with Scout II......Page 85
3 Self-stabilization in the SLIP......Page 86
4 Modeling the Bounding Gait......Page 87
6 The half-bound and rotary gallop gaits......Page 90
7 Conclusion......Page 93
Part 3: Machine Design and Control......Page 94
1 Introduction......Page 95
2 Design principles: overview......Page 97
3 Information theoretic implications of embodiment......Page 101
4 Exploring "ecological balance"—artificial evolution and morphogenesis......Page 106
5 Discussion and conclusions......Page 108
1 Introduction......Page 111
2 Lessons from biological findings......Page 112
3 The model......Page 113
4 Proposed method......Page 114
5 Preliminary simulation results......Page 115
6 Conclusion and future work......Page 118
1 Introduction......Page 121
3 Kinematic model of snake robots......Page 123
4 Condition for redundancy controllable system......Page 126
5 Controller design for main-objective......Page 127
6 Controller design for sub-objective......Page 128
8 Conclusion......Page 129
Part 4: Bipedal Locomotion Utilizing Natural Dynamics......Page 133
1 Introduction......Page 134
2 The analytical model and basic equations......Page 135
3 The results of simulation......Page 138
4 Conclusion......Page 143
1 Introduction......Page 146
2 Foot shape......Page 147
3 McKibben muscles as adjustable springs......Page 149
4 Pneumatic system......Page 151
5 Pressure control unit......Page 152
6 Walking experiments......Page 154
7 Conclusion......Page 156
1 Introduction......Page 158
2 Ballistic walking with state machine......Page 159
3 Energy minimization by a learning module......Page 162
4 Comparing with human data......Page 164
5 Discussion......Page 166
1 Introduction......Page 168
2 Model of the walking robot......Page 169
3 Stability of passive dynamic walking......Page 170
4 DFC-based control method......Page 171
5 Computer simulation......Page 174
6 Conclusion and future work......Page 177
Part 5: Neuro-Mechanics & CPG and/or Reflexes......Page 178
1 Introduction......Page 179
2 Neural control of salamander locomotion......Page 180
3 Mechanical simulation......Page 181
4 Locomotion controller......Page 182
5 Discussion......Page 188
1 Introduction......Page 191
2 Real-time adaptation of locomotion through global entrainment......Page 192
3 Anticipatory adjustment of locomotion through visuo-motor coordination......Page 197
4 Computational "lesion" experiments in gait pathology......Page 199
5 Freezing and freeing degrees of freedom in the development of locomotion......Page 201
6 Concluding comments......Page 203
1 Introduction......Page 207
2 Model......Page 208
3 Results......Page 213
4 Discussion......Page 216
1 Introduction......Page 219
2 Adaptive dynamic walking based on biological concepts......Page 220
3 Entrainment between pitching and rolling motions......Page 223
4 Adaptive walking on irregular terrain......Page 225
5 Conclusion......Page 227
1 Introduction......Page 229
2 Model......Page 230
3 Stability analysis of walking......Page 231
4 Turning walk control......Page 236
5 Conclusion......Page 237
1 Introduction......Page 239
2 Activation, activity, target rating and behaviours......Page 240
3 The walking machine BISAM......Page 243
4 Implementing a behaviour network......Page 244
5 Conclusion and outlook......Page 245
Part 6: Adaptation at Higher Nervous Level......Page 249
1 Introduction......Page 250
2 Reactive control of Bp locomotion on a slanted treadmill belt......Page 251
3 Reactive and anticipatory control of Bp locomotion on an obstacle-attached treadmill belt......Page 254
4 Summary......Page 258
1 Introduction......Page 261
2 Dynamic movement primitives......Page 263
3 Parallels in biological research......Page 269
4 Conclusion......Page 275
1 Introduction......Page 281
2 The twelve postulates for visual control of human locomotion......Page 282
3 Challenges for applying this knowledge to building of adaptable biped robots......Page 284
4 Avoiding collisions with obstacles in the travel path......Page 286
5 Avoiding stepping on a specific landing area in the travel path......Page 293
6 Conclusions......Page 296