With a billion – soon to be two billion - cellular telephones in circulation, the next challenge is to make cellular radio functions adaptive to their environment. This book provides a comprehensive theoretical framework for optimizing performance, discussing joint optimization of Noise Figure and Input Intercept Point in receiver systems. Also examined are original techniques to optimize voltage controlled oscillators and low-noise amplifiers, minimizing power consumption while maintaining adequate system performance.
Author(s): Aleksandar Tasic, Wouter A. Serdijn, John R. Long,
Edition: 1
Year: 2006
Language: English
Pages: 236
CONTENTS......Page 6
FOREWORD......Page 10
OUTLINE......Page 12
LIST OF ABBREVIATIONS......Page 14
1.1 Why Silicon?......Page 17
1.2 Why Wireless and RF?......Page 18
1.3 Why Low-Power and Adaptive RF?......Page 20
1.5 Adaptivity Objectives......Page 23
References......Page 24
2.1 Gain Parameters......Page 28
2.1.1 Stability......Page 30
2.1.2 Matched Gain Parameters......Page 31
2.2 Nonlinearity Parameters......Page 33
2.2.1 Intermodulation......Page 35
2.3 Noise Figure......Page 38
2.4 Phase Noise......Page 41
2.5 Dynamic Range......Page 43
2.6 RF Front-End Performance Parameters......Page 45
2.7 Conclusions......Page 48
References......Page 49
3. SPECTRUM-SIGNAL TRANSFORMATION......Page 54
3.1.1 Heterodyne Architectures......Page 55
3.1.2 Homodyne Architectures......Page 57
3.1.3 Low-IF Architectures......Page 60
3.1.4 Wireless Standards and Employed Architectures......Page 61
3.2 Signal and Spectral Transformations......Page 62
3.3 Mixer-Oscillator Models......Page 67
3.3.1 Double-Real Mixer-Oscillator Model......Page 68
3.3.2 Single-Complex Mixer-Oscillator Model......Page 70
3.3.3 Double-Complex Mixer-Oscillator Model......Page 73
3.4 Image-Rejection Ratio Model......Page 77
3.5 IRR Model of Double-Quadrature Downconverters......Page 79
3.6 Conclusions......Page 82
References......Page 83
4. SELECTION OF PERFORMANCE PARAMETERS FOR RECEIVER CIRCUITS......Page 91
4.1 System Considerations......Page 92
4.2 Independent Selection of NF And IIP3 Specifications......Page 95
4.3.1 The Optimality Criterion......Page 101
4.3.2 The Equality Criterion......Page 106
4.3.3 Optimality vs. Equality......Page 109
4.4 Equilibrium, Optimality and Equality Criteria......Page 110
4.4.1 Optimal SFDR of Receiver Circuits......Page 112
4.5 Notes on Power Consumption......Page 115
4.6 Performance Trade-offs in an RF Circuit......Page 116
4.7 Conclusions......Page 118
References......Page 119
5. ADAPTIVITY OF LOW-NOISE AMPLIFIERS......Page 122
5.1 Adaptivity Phenomena of Amplifiers......Page 123
5.2.1 Input-Impedance Model......Page 125
5.2.2 Gain Model......Page 127
5.2.3 Noise Figure Model......Page 128
5.2.4 Linearity Model......Page 132
5.3 Adaptivity Models of Low-Noise Amplifiers......Page 133
5.4 Conclusions......Page 137
References......Page 138
6.1 Adaptivity Phenomena of Oscillators......Page 140
6.1.2 Frequency-Transconductance Tuning......Page 141
6.2 An Adaptive Voltage-Controlled Oscillator......Page 142
6.3 Phase-Noise Model of LC Voltage-Controlled Oscillators......Page 144
6.3.1 Time-Varying Transfer Function......Page 146
6.3.2 Base-Resistance Noise Contribution......Page 148
6.3.3 Transconductor Shot-Noise Contribution......Page 149
6.3.4 Tail-Current Noise Contribution......Page 150
6.3.5 Total Oscillator Noise......Page 151
6.3.6 Resonant-Inductive Degeneration of Tail-Current Source......Page 153
6.3.7 Resistive Degeneration of Tail-Current Source......Page 160
6.3.8 Adaptive Phase-Noise Model......Page 162
6.4 Phase-Noise Performance of Quasi-Tapped Voltage-Controlled Oscillators......Page 163
6.5.1 Phase-Noise Tuning Range......Page 165
6.5.2 Frequency-Transconductance Sensitivity......Page 166
6.6 K-rail Diagrams – Comprehensive Performance Characterization of Voltage-Controlled Oscillators......Page 169
6.6.1 K-Rail Diagram......Page 170
6.6.2 K-Rails Diagram......Page 171
6.6.3 K-Loop Diagram......Page 173
6.6.4 Construction of K-Loop Diagrams - an all-Round Example......Page 175
6.7 Oscillator Design Problem......Page 177
6.8 Conclusions......Page 180
References......Page 181
7. DESIGN OF ADAPTIVE VOLTAGE-CONTROLLED OSCILLATORS AND ADAPTIVE RF FRONT-ENDS......Page 184
7.1.1 Design for Adaptivity of Voltage-Controlled Oscillators......Page 185
7.1.2 Circuit Parameters of the Adaptive Voltage-Controlled Oscillator......Page 187
7.1.3 Measurement Results for the Adaptive Voltage-Controlled Oscillator......Page 188
7.2 A Multistandard Adaptive Voltage-Controlled Oscillator......Page 191
7.2.1 Designing for Adaptivity of Multistandard Voltage-Controlled Oscillators......Page 192
7.2.2 Circuit Parameters of the Multistandard Adaptive Voltage-Controlled Oscillator......Page 194
7.2.3 Measurement Results for the Multistandard Adaptive Voltage-Controlled Oscillator......Page 196
7.3 Multistandard Adaptive RF Front-Ends......Page 199
7.3.1 System Considerations for Multistandard Adaptive RF Front-Ends......Page 200
7.3.2 A Multi-Mode Adaptive Quadrature Signal Generator......Page 204
7.3.3 A Multi-Mode Adaptive Quadrature Downconverter......Page 205
7.3.4 Experimental Results for the Multi-Mode Adaptive Image-Reject Downconverter......Page 208
7.3.5 Back-Annotation of Specifications to Receiver Circuits......Page 213
References......Page 215
A. REAL-TO-COMPLEX-TO-REAL SPECTRUM-SIGNAL TRANSFORMATION......Page 219
B. TRANSFORMER-FEEDBACK DEGENERATION OF LOW-NOISE AMPLIFIERS......Page 222
I......Page 230
S......Page 231
W......Page 232