Acoustic Systems in Biology

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book is a practical guide for researchers and advanced graduate students in biology and biophysics who need a quantitative understanding of acoustical systems such as hearing, sound production, and vibration detection in animals at the physiological level. It begins with an introduction to physical acoustics, covering the fundamental concepts and showing how they can be applied quantitatively to understand auditory and sound-producing systems in animals. Only after the relatively simple mechanical part of the system is explained does the author focus his attention on the underlying physiological processes. The book is written on three levels. For those wanting a brief survey of the field, each chapter begins with a nonmathematical synopsis which summarizes the content and refers to the figures, all of which are designed to be understood apart from the main text. At the next level, the reader can follow the main text, but need not give close attention to anything but the general concepts and techniques involved. At the third level, the reader should follow the mathematical arguments in detail and attempt the discussion of questions at the end of each chapter. The author has provided detailed solutions which serve to expand the discussions of particular cases.

Author(s): Neville H. Fletcher
Publisher: Oxford University Press, USA
Year: 1992

Language: English
Pages: 352

0195069404......Page 1
Contents......Page 8
Common symbols......Page 12
1.1 Physics and Biology......Page 18
1.2 Building Blocks and Models......Page 19
1.4 Mathematics......Page 21
2 SIMPLE VIBRATORS......Page 23
2.1 The One-Dimensional Simple Oscillator......Page 24
2.3 Complex Notation......Page 26
2.4 Damping......Page 29
2.5 The Sinusoidally Driven Oscillator......Page 31
2.6 Impedance and Admittance......Page 35
2.7 Linearity and Superposition......Page 38
2.8 Transient Response......Page 39
2.9 Nonlinearity......Page 41
3 VIBRATION OF STRINGS AND BARS......Page 45
3.2 The Wave Equation......Page 46
3.3 Normal Modes of a String......Page 48
3.4 Normal Modes and Eigenfunctions......Page 50
3.5 Damping......Page 52
3.6 The Sinusoidally Driven String......Page 53
3.8 Point Admittance and Transfer Admittance......Page 54
3.9 Bars and Rods......Page 57
3.11 Imperfectly Clamped Bars—Sensory Hairs......Page 61
3.12 End-Loaded Bars—Otoliths......Page 62
4.1 Sensory Hairs......Page 68
4.2 Viscosity and Boundary Layers......Page 69
4.3 Viscous Force on a Hair......Page 71
4.4 Sensory Hairs......Page 72
4.5 Sensory Thresholds......Page 76
4.6 Otoliths......Page 78
4.7 Nonlinearity......Page 82
5 VIBRATION OF MEMBRANES, PLATES, AND SHELLS......Page 85
5.2 Vibration of Rectangular Membranes......Page 86
5.3 Vibration of Circular Membranes......Page 88
5.4 Tapered Membranes......Page 91
5.5 Sinusoidally Driven Membranes......Page 93
5.6 Elastically Braced Membranes......Page 94
5.7 Loaded Membranes......Page 96
5.9 Vibration of Plates......Page 98
5.10 Vibration of Shells......Page 100
5.11 Buckling of Shells......Page 101
6 ACOUSTIC WAVES......Page 104
6.2 Plane Waves......Page 105
6.3 Sound Pressure and Intensity......Page 109
6.4 Reflection and Transmission at a Boundary......Page 112
6.5 Wave Attenuation......Page 114
6.6 Spherical Waves......Page 115
6.7 Surface Waves on Water......Page 118
6.8 Surface Waves in Solids......Page 119
6.9 Scattering by Solid Objects......Page 120
6.10 Scattering by Bubbles......Page 122
7 ACOUSTIC SOURCES AND RADIATION......Page 125
7.2 Simple Spherical Source......Page 126
7.3 Mechanical and Acoustic Impedance......Page 127
7.4 Source near a Reflector......Page 129
7.5 Radiation from a Vibrating Disc......Page 131
7.6 Radiation from a Vibrating Panel......Page 132
7.7 Radiation from an Open Pipe......Page 134
7.8 The Near Field......Page 137
7.9 The Reciprocity Theorem......Page 139
7.11 Underwater Sources......Page 140
8 LOW-FREQUENCY NETWORK ANALOGS......Page 143
8.1 Electric Analogs......Page 144
8.2 Analogs for Mechanical Components......Page 145
8.3 Levers......Page 149
8.4 Analogs for Acoustic Components......Page 152
8.5 End Correction for a Pipe and an Aperture......Page 156
8.6 The Helmholtz Resonator......Page 157
8.7 The Tympanum......Page 158
8.8 Solution of Networks......Page 162
8.9 Computer Solutions......Page 164
9 LOW-FREQUENCY AUDITORY MODELS......Page 167
9.1 Constructing Models......Page 168
9.2 The Incident Sound Field—Diffraction......Page 169
9.3 Response and Sensory Threshold......Page 171
9.4 Baffled Diaphragm......Page 172
9.5 Simple Cavity-Backed Ear......Page 174
9.6 Neural Transducer Matching......Page 177
9.7 Cavity-Coupled Ears......Page 179
9.8 A More Elaborate Model......Page 183
9.9 Laboratory Studies......Page 186
9.10 An Aquatic Auditory System......Page 189
9.11 Conclusions......Page 192
10 PIPES AND HORNS......Page 193
10.2 Pipes and Tubes......Page 194
10.3 Wall Losses......Page 197
10.4 Helmholtz Resonator......Page 198
10.5 Simple Horns......Page 201
10.6 Directionality of a Horn......Page 209
10.7 Obliquely Truncated Horns......Page 210
10.8 Higher Modes in Horns......Page 211
10.9 Shallow Asymmetric Horns......Page 213
10.10 Hybrid Reflector Horns......Page 216
11.2 Horn-Loaded Simple Ear......Page 219
11.3 Pipe-Coupled Ears......Page 223
11.4 Complex Systems......Page 227
12.1 Neural Transducers......Page 230
12.2 The Transduction Problem......Page 231
12.3 A Frequency-Dispersive Membrane......Page 232
12.4 Cochlear Mechanics......Page 234
12.5 The Middle Ear......Page 240
12.6 Active Cochlear Response......Page 243
13 MECHANICALLY EXCITED SOUND GENERATORS......Page 245
13.1 Sound Production......Page 246
13.2 Impulsive Excitation......Page 247
13.3 Frictional Excitation......Page 249
13.4 Harmonics, Mode Locking, and Chaos......Page 253
13.5 Pick and File Excitation......Page 255
13.6 Buckling Tymbals......Page 257
13.7 Conclusions......Page 258
14 PNEUMATICALLY EXCITED SOUND GENERATORS......Page 260
14.1 Air-Driven Systems......Page 261
14.2 Larynx and Syrinx......Page 262
14.3 Vocal Systems......Page 269
14.4 An Avian Vocal System......Page 273
14.5 Other Vocal Systems......Page 279
14.6 Aerodynamic Systems......Page 280
15 SIGNALS, NOISE, AND INFORMATION......Page 287
15.2 Time and Frequency......Page 288
15.3 Signals and Noise......Page 293
15.4 Information and Coding......Page 299
15.5 Animal Sonar......Page 304
15.6 Neural Processing......Page 308
15.7 Conclusion......Page 312
A. Mathematical Appendix......Page 316
B. Pipe and Horn Impedance Coefficients......Page 324
C. Physical Quantities and Units......Page 327
F......Page 330
O......Page 331
Y......Page 332
Bibliography......Page 334
B......Page 340
E......Page 341
H......Page 342
M......Page 343
N......Page 344
R......Page 345
S......Page 346
W......Page 347
Y......Page 348