Accelerated Plant Breeding, Volume 4: Oil Crops

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Plant improvement has shifted its focus from yield, quality and disease resistance to factors that will enhance commercial export, such as early maturity, shelf life and better processing quality. Conventional plant breeding methods aiming at the improvement of a self-pollinating crop usually take 10-12 years to develop and release of the new variety. During the past 10 years, significant advances have been made and accelerated methods have been developed for precision breeding and early release of crop varieties. 

This book focuses on the accelerated breeding technologies that have been adopted for major oil crops. It summarizes concepts dealing with germplasm enhancement and development of improved varieties based on innovative methodologies that include doubled haploidy, marker assisted selection, marker assisted background selection, genetic mapping, genomic selection, high-throughput genotyping, high-throughput phenotyping, mutation breeding, reverse breeding, transgenic breeding, shuttle breeding, speed breeding, low cost high-throughput field phenotyping, etc. This edited volume is therefore an excellent reference on accelerated development of improved crop varieties.

Author(s): Satbir Singh Gosal, Shabir Hussain Wani
Publisher: Springer
Year: 2022

Language: English
Pages: 565
City: Cham

Foreword
Preface
Contents
Chapter 1: Breeding Major Oilseed Crops: Prospects and Future Research Needs
1.1 Introduction
1.2 Genetic Resources and International Institutions
1.2.1 Gene Pools
1.2.2 Primary Gene Pool
1.2.3 Secondary, Tertiary, and Quaternary Gene Pools
1.2.4 Utilization of Genetic Resources in Oil Crops
1.3 Mode of Pollination and Breeding Behavior in Oil Crops
1.4 Major Goals of Oil Crop Breeding, Achievements and Strategies
1.4.1 High Seed Yield
1.4.2 Increasing Seed Oil Content
1.4.3 Breeding for Improvement of Quality Traits in Oil Crops
1.4.3.1 Genetic Improvement of Fatty Acid Composition
1.4.4 Genetic Engineering in Oil Crops and Identification of Genes for Novel Traits
1.5 Future Research Strategies
References
Chapter 2: Accelerating Soybean Improvement Through Genomics-Assisted Breeding
2.1 Introduction
2.2 Genetic Resources in Soybean
2.2.1 Wild and Cultivated Species of Soybean
2.2.2 Global Soybean Germplasm Collections
2.3 Speed Breeding
2.4 Mutagenesis in Soybean
2.5 Marker-Assisted Breeding
2.6 Genomic Selection
2.7 Genome Editing for Precision Breeding
2.8 Challenges in Soybean Improvement and Future Directions
References
Chapter 3: Genetic Enhancement of Groundnut: Current Status and Future Prospects
3.1 Introduction
3.2 Constraints to Groundnut Production
3.3 Status of Groundnut Breeding
3.3.1 Wealth of Groundnut Genetic Resources
3.3.1.1 Cultivated Genetic Resources
3.3.1.2 Wild Arachis Genetic Resources
3.4 Desirable Traits in Arachis Species for Crop Improvement
3.5 Conventional Breeding Approaches
3.6 Yield Gap Analysis and Impact of Improved Technologies in Groundnut
3.6.1 Impact of Improved Varieties and Production Technologies on Productivity of Groundnut
3.6.2 Genetic Enhancement Through Release and Cultivation of Improved Groundnut Varieties with Multiple Biotic/Abiotic Stress Tolerance
3.6.3 Breeder Seed Production of Improved Groundnut Varieties in India
3.6.4 A Success Story of GPBD 4 from UAS, Dharwad: Model for Adoption of Improved Groundnut Varieties in Farmer’s Field in India
3.7 Rapid Generation Advancement and Speed Breeding in Groundnut
3.8 Genomic-Assisted Breeding in Groundnut
3.9 Genomics of Biotic Stress Tolerance
3.10 Genomics of Abiotic Stress Tolerance
3.11 Transformation
3.12 Conclusion and Future Perspective
References
Chapter 4: Recent Advances in Genetics, Genomics, and Breeding for Nutritional Quality in Groundnut
4.1 Introduction
4.2 Ready-to-Use Therapeutic Foods (RUTF) Made from Groundnut
4.3 Nutritional Value of Groundnut
4.3.1 Protein
4.3.2 Fatty Acids
4.3.3 Dietary Fibers and Micronutrients
4.3.4 Resveratrol
4.4 Genomics of Nutritional Quality Traits in Groundnut
4.4.1 Linkage Mapping
4.4.2 Association Mapping
4.5 Breeding Biofortified Groundnut Varieties
4.6 Anti-nutritional Compounds
4.7 Summary
References
Chapter 5: Accelerated Breeding for Brassica Crops
5.1 Introduction
5.2 Brassica Breeding Programs
5.3 Doubled Haploidy
5.3.1 Pre-isolation Conditions
5.3.2 Post-isolation Conditions
5.3.3 Donor Plant Conditions
5.3.4 Developmental Stage of the Pollen Grain
5.3.5 Microspore Culture
5.3.5.1 Culture Conditions
5.3.6 Embryo Culture
5.3.7 Plantlet Culture
5.3.8 Plantlet Transfer to Soil
5.3.9 Chromosome Doubling
5.4 Speed Breeding
5.5 Genetic Engineering
5.5.1 Cotyledonary Petiole Transformation [Bulk Inoculation and Co-cultivation, from Lee (1996), as Modified from Moloney et al. (1989)]
5.5.1.1 Seed Sterilization and Germination
5.5.1.2 Agrobacterium Preparation
5.5.1.3 Explant Preparation
5.5.1.4 Inoculation with Agrobacterium
5.5.1.5 Selection and Regeneration
5.5.1.6 Shoot Elongation
5.5.1.7 Rooting
5.5.2 Brassica napus Hypocotyl Transformation
5.5.2.1 Seed Sterilization and Germination
5.5.2.2 Explant Preparation
5.5.2.3 Co-cultivation
5.5.2.4 Callus Induction
5.5.2.5 Shoot Induction
5.5.2.6 Shoot Elongation
5.5.2.7 Rooting and Planting
5.6 Conclusion
References
Chapter 6: Achieving Genetic Gain for Yield, Quality and Stress Resistance in Oilseed Brassicas Through Accelerated Breeding
6.1 Introduction
6.2 Accelerated Plant Breeding
6.2.1 Rapid Generation Advancement (RGA)
6.2.2 Shuttle Breeding
6.2.3 Doubled Haploidy
6.2.3.1 In Vitro Haploid Production
6.2.3.2 In Vivo Haploid Production
6.2.4 Marker-Assisted Selection (MAS)
6.2.5 Genomic Selection
6.3 Special Implications of Accelerated Breeding in Brassica Improvement
6.3.1 Development of Genetic Resources
6.3.2 Recombination and Mutation Breeding
6.3.3 Resynthesis of Amphidiploids
6.3.4 Wide Hybridization
6.4 Conclusion
References
Chapter 7: Genomic-Assisted Breeding for Enhanced Harvestable (Pod) and Consumable (Seed) Product, Yield Productivity in Groundnut (Arachis hypogaea L.)
7.1 Introduction
7.2 Nutritional Composition of Groundnut Kernels
7.3 Taxonomy and Evolution
7.4 Germplasm and Genetic Resources
7.5 Genetics of Quantitative Traits
7.6 Varietal Development
7.7 Major Constraints
7.7.1 Yield and Yield-Related Traits
7.7.2 Quality Traits
7.7.3 Biotic Stresses
7.7.3.1 Leaf Spots
7.7.3.2 Rust
7.7.3.3 The Stem/Pod Rot and Peanut Bud Necrosis
7.7.3.4 Rosette
7.7.3.5 Aflatoxin
7.7.4 Abiotic Stress
7.8 Genomic Resources
7.9 Mapping Populations and Marker-Trait Associations in Groundnut
7.10 Genomic-Assisted Breeding for Trait Improvement
7.11 Advanced-Backcross QTL Analysis-Based Breeding (AB-Breeding)
7.12 Rapid Generation Advancement/Speed Breeding
7.13 Conclusion
References
Chapter 8: Genomics-Assisted Breeding for Resistance to Leaf Spots and Rust Diseases in Peanut
8.1 Introduction
8.2 Loss of Pod Yield Due to Leaf Spots and Rust
8.3 Symptoms of Leaf Spots and Rust Diseases
8.3.1 Early Leaf Spot
8.3.2 Late Leaf Spot
8.3.3 Rust
8.4 Components of Resistance to Leaf Spots and Rust
8.4.1 Early Leaf Spot
8.4.2 Late Leaf Spot
8.4.3 Rust
8.5 Genetics of Resistance
8.6 Sources of Resistance
8.7 Breeding for Foliar Disease Resistance
8.8 Genomics-Assisted Breeding
8.8.1 Marker Development
8.8.2 Mapping of Resistance to Leaf Spots and Rust
8.8.3 Association Mapping
8.8.4 QTL Validation
8.9 Transcriptomics
8.10 Proteomics
8.11 Epigenomics
8.12 Marker-Assisted Backcrossing (MABC) for Foliar Disease Resistance
8.13 Transgenic Approach
8.14 Conclusions and Future Perspectives
References
Chapter 9: Safflower Improvement: Conventional Breeding and Biotechnological Approach
9.1 Introduction
9.2 Description About the Crop
9.2.1 Germplasm Resources
9.2.2 Conventional Breeding
9.2.3 Seed Related Traits
9.2.4 Nutritional Parameters
9.2.5 Non-spiny Type
9.2.6 Nutritional Properties
9.2.7 Yield and Yield Components
9.2.8 Inheritance to Biotic and Abiotic Stresses
9.3 Safflower Improvement: Conventional Breeding
9.3.1 Breeding Methods
9.3.1.1 Introduction and Pure Line Selection
9.3.1.2 Hybridization
Pedigree
Bulk Population Method
Single-Seed Descent Method
Recurrent Selection (Backcrossing)
9.3.2 Hybrid Breeding
9.3.2.1 Single Recessive Genetic Male Sterility
9.3.2.2 Dominant Genetic Male Sterility
9.3.2.3 Cytoplasmic-Genetic Male Sterility
9.4 Safflower Improvement: Biotechnology
9.4.1 Molecular Markers
9.4.1.1 Genetic Diversity
9.4.1.2 Phylogenetic Analysis
9.4.1.3 Genomics and Marker-Assisted Selection
9.4.1.4 Transcriptomics and Proteomics
9.4.2 Tissue Culture
9.4.3 Genetic Engineering
9.5 Breeding for End Use
9.5.1 Disease Resistance
9.5.2 Oil Content and Quality
9.5.3 Insect Resistance
9.5.4 Spineless Safflower
9.6 Future Direction
References
Chapter 10: Enhancing Genetic Gain in Coconut: Conventional, Molecular, and Genomics-Based Breeding Approaches
10.1 Introduction
10.2 Coconut Genetic Resources
10.3 Coconut Breeding: Current Status
10.4 Breeding Programs
10.4.1 Coconut Breeding Program in India
10.4.1.1 Selection
10.4.1.2 Exploitation of Hybrid Vigor
10.4.2 Coconut Breeding Program in Sri Lanka
10.4.3 Coconut Breeding Program in Indonesia
10.4.4 Coconut Breeding Program in the Philippines
10.4.5 Coconut Breeding Program in Thailand
10.4.6 Coconut Breeding Program in Vietnam
10.4.7 Coconut Breeding Program in Papua New Guinea
10.4.8 Coconut Breeding Program in Fiji
10.4.9 Coconut Breeding Program in Vanuatu
10.4.10 Coconut Breeding Program in Côte d’Ivoire
10.4.11 Coconut Breeding Program in Ghana
10.4.12 Coconut Breeding Programs in Other Countries
10.4.12.1 Bangladesh
10.4.12.2 China
10.4.12.3 Tanzania
10.4.12.4 Mexico
10.5 Application of Molecular Markers in Coconut Improvement Programs
10.6 Genetic Linkage Maps in Coconut: QTL Mapping
10.7 Whole-Genome Assemblies
10.7.1 Genome Assembly of the Chinese Hainan Tall Cultivar
10.7.2 The Genome of the Philippine Cultivar Catigan Green Dwarf
10.7.3 Genome of Disease-Resistant Cultivar Chowghat Green Dwarf
10.8 Multiple Omics Approaches in Coconut
10.9 Conclusions and Recommendations
References
Chapter 11: Biotechnological Approaches for Genetic Improvement of Castor Bean (Ricinus communis L.)
11.1 Introduction
11.1.1 Genetic Improvement
11.1.2 Breeding
11.2 Genomics-Assisted Breeding Approach
11.2.1 Genetic Resources
11.2.1.1 Germplasm Stocks
11.2.2 Genomic Resources
11.2.2.1 Molecular Markers: Development and Utility in Genetic Diversity Studies
11.2.2.2 Genome Sequence-Based Resources
Genome Sequence-Based Studies
Genetic Linkage Map
Comparative Genomic Study
11.3 Genetic Engineering
11.3.1 Basic Requirements for Genetic Engineering
11.3.1.1 Tissue Culture
Explant Optimization
Media, Growth Regulators, and Culture Conditions
11.3.1.2 Selection Markers
11.3.1.3 Transformation Protocols
In Vitro Culture-Based Transformation Techniques
Tissue Culture-Independent Transformation Techniques
In Planta Transformation Techniques
11.4 Biotechnological Approaches Against Biotic Stress Factors in Castor Bean
11.4.1 Transgenics with Insect Pest Tolerance or Resistance
11.4.2 Biotechnological Approaches for Disease Tolerance
11.4.2.1 Biotechnology Against Gray Mold Disease
11.4.2.2 Biotechnology Against Charcoal Disease
11.4.2.3 Biotechnology Against Fusarium Wilt Disease
11.4.3 Biotechnology for Weedicide-Resistance Engineering
11.5 Biotechnological Approaches Against Abiotic Stress Factors in Castor Bean Crop
11.5.1 Biotechnology for Imparting Drought Tolerance
11.5.2 Biotechnology for Imparting Salt Tolerance
11.5.3 Heavy Metal Tolerance in Castor Bean
11.6 Biotechnology for Plant-Type Engineering in Castor Bean
11.7 Biotechnology for Oil-Quality Engineering in Castor Bean
11.8 Biotechnology for Utilization of Castor Bean Oil Cake/Meal
11.8.1 Castor Bean Oil Cake/Meal
11.8.2 Conventional Approaches for Removing Antinutritional and Toxic Factors in Castor Cake
11.8.3 Advanced Approaches for Removing Antinutritional and Toxic Factors in Castor Cake
11.8.3.1 Genomic-Based Approaches
Mutation Breeding
Somaclonal Variations
Gene Pyramiding
Genetic Engineering
11.9 Potential of Genome Editing in Castor Bean
11.10 Omics Studies in Castor Bean
11.10.1 Omics for Castor Bean Developmental Biology
11.10.2 Omics for Castor Bean Abiotic Stress Biology
11.10.3 Omics for Detecting Ricin
11.11 Future Perspectives
11.12 Conclusions
References
Chapter 12: Genetic and Molecular Technologies for Achieving High Productivity and Improved Quality in Sunflower
12.1 Introduction
12.2 Origin, History and Botany
12.3 Sunflower Genetic Resources
12.4 Genetics of Breeding Objectives in Sunflower
12.5 Induced Mutation to Facilitate Sunflower Breeding
12.6 Reverse Genetics: TILLING and EcoTILLING
12.7 Molecular Marker and Biotechnology Resources
12.8 Genetic Engineering: New Breeding Techniques to Facilitate Sunflower Improvement
12.9 Progress in Sunflower Hybrid Development in India
12.10 Concluding Remarks
References
Chapter 13: Genomic Cross Prediction for Linseed Improvement
13.1 Introduction
13.2 Strategy of Genomic Cross Prediction
13.2.1 Genomic Cross Prediction
13.2.2 Procedure of Genomic Cross Prediction
13.2.3 Genetic Parameters for Cross-evaluation
13.3 Software Tools for Genomic Cross Prediction
13.3.1 Software Tools for Data Analysis
13.3.2 A Pipeline Package of Genomic Cross Prediction
13.4 Genomic Cross Prediction for Linseed Improvement
13.4.1 Materials and Methods
13.4.1.1 Training Population and Phenotypic and Genomic Data
13.4.1.2 Identification of Quantitative Trait Nucleotides (QTNs)
13.4.1.3 Construction of Genomic Selection Models
13.4.1.4 Virtual Crosses and Simulation of Progeny Populations
13.4.1.5 Evaluation of Virtual Crosses
13.4.2 Results and Discussions
13.4.2.1 Identification of Quantitative Trait Nucleotides (QTNs)
13.4.2.2 Optimal GS Models
13.4.2.3 General Combining Ability (GCA) of Parents
13.4.2.4 Usefulness of Crosses
13.4.2.5 Relationship of GCAs with Us
13.4.2.6 Differences Between Parents with Genetic Variance of Progeny Populations
13.4.2.7 Evaluation of Top Parents and Crosses
13.5 Conclusions
References
Chapter 14: Biotechnological Interventions for Improving Cottonseed Oil Attributes
14.1 Introduction
14.2 Composition of Cottonseed Oil
14.3 Enhancing Cottonseed Oil Attributes Through Biotechnological Interventions
14.4 Future Prospects
References
Chapter 15: Advances in Classical and Molecular Breeding in Sesame (Sesamum indicum L.)
15.1 Introduction
15.2 Classical Breeding in Sesame
15.2.1 High Seed Yield
15.2.2 Early Maturity and Short Plant Stature
15.2.3 High Oil Content
15.2.4 Fatty Acid Compositions of Oil
15.2.5 Shattering Resistance
15.2.6 Abiotic Stress Tolerance
15.2.7 Biotic Stress Tolerance
15.3 Sesame Classical Breeding Methods
15.3.1 Heterosis Breeding in Sesame
15.4 Molecular Breeding in Sesame
15.4.1 RFLP (Restriction Fragment Length Polymorphism)
15.4.2 RAPD (Randomly Amplified Polymorphic DNA)
15.4.3 AFLP (Amplified Fragment Length Polymorphism)
15.4.4 SSR or Microsatellites (Simple Sequence Repeats)
15.4.5 ISSR (Inter-simple Sequence Repeat)
15.4.6 SNP (Single Nucleotide Polymorphism)
15.5 Plant Tissue Culture in Sesame
15.6 Concluding Remarks
References
Index