Accelerated Plant Breeding, Volume 3: Food Legumes

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Plant improvement has shifted its focus from yield, quality and disease resistance to factors that will enhance commerical export, such as early maturity, shelf life and better processing quality. Conventional plant breeding methods aiming at the improvement of a self-pollinating crop, such as wheat, usually take 10-12 years to develop and release of the new variety. During the past 10 years, significant advances have been made and accelerated methods have been developed for precision breeding and early release of crop varieties. The proposed volume work thus plans to summarize concepts dealing with germplasm enhancement and development of improved varieties based on innovative methodologies that include doubled haploidy, marker assisted selection, marker assisted background selection, genetic mapping, genomic selection, high-throughput genotyping, high-throughput phenotyping, mutation breeding, reverse breeding, transgenic breeding, shuttle breeding, speed breeding, low cost high-throughput field phenotyping, etc. It will be an important reference with special focus on accelerated development of improved crop varieties.

Author(s): Satbir Singh Gosal; Shabir Hussain Wani
Publisher: Springer
Year: 2020

Language: English
Pages: 430
City: Cham

Foreword
Preface
Contents
About the Editors
Chapter 1: Efficient Breeding of Pulse Crops
1.1 Introduction
1.2 Production Trends
1.3 Overview of Past Breeding Efforts
1.3.1 Genetic Resources
1.3.2 Variety Development
1.3.3 Breeding Progress
1.4 Accelerating Breeding Efficiency in Pulses
1.4.1 Defining the Target Population of Environments (TPE)
1.4.2 High-Throughput Phenotyping
1.4.3 Simulation Models for Appropriate Breeding Scheme
1.4.4 Enhancing Genetic Variability
1.4.5 Selection Indices
1.4.6 Indirect Selection
1.4.7 Marker-Assisted Selection
1.4.8 Genomic Selection
1.4.9 Rapid Generation Advancement
1.4.10 Recombinant DNA Technology
1.4.11 Genome Editing Technologies
1.4.12 Experimental Design
1.5 Conclusions
References
Chapter 2: Advances in Chickpea Breeding and Genomics for Varietal Development and Trait Improvement in India
2.1 Introduction
2.2 Germplasm and Genetic Resources
2.3 Varietal Development
2.4 Major Constraints
2.4.1 Biotic Stresses
2.4.1.1 Fusarium Wilt
2.4.1.2 Ascochyta Blight
2.4.1.3 Botrytis Grey Mould
2.4.1.4 Pod Borer
2.4.1.5 Bruchids
2.4.1.6 Weeds
2.4.2 Abiotic Stresses
2.4.2.1 Drought
2.4.2.2 Heat Stress
2.4.2.3 Cold Stress
2.5 Genomic and Transcriptomic Resources
2.6 Linkage Maps, Physical Maps and Functional Maps
2.7 Trait Mapping for Various Biotic and Abiotic Stress Tolerance and Yield-Related Traits
2.8 Genomics-Assisted Breeding (GAB) for Trait Improvement
2.9 Rapid Generation Advancement/Speed Breeding
2.10 Future Research Priorities
2.10.1 Germplasm Characterization
2.10.2 Trait Identification and Germplasm Enhancement
2.10.3 Regaining Chickpea Area in Northern India
2.10.4 Varieties for Vegetable Purpose
2.10.5 Kabuli Chickpea Varieties for Export and Domestic Consumption
2.10.6 Machine-Harvestable Chickpea for Reducing Cost of Cultivation
2.10.7 Herbicide-Tolerant Varieties
2.10.8 Varieties with Better Nutrient Acquisition Efficiency
2.10.9 Nutritionally Rich Varieties
2.10.10 Integrated Breeding
References
Chapter 3: Conventional and Biotechnological Approaches for Targeted Trait Improvement in Lentil
3.1 Introduction
3.2 Pre-breeding for Targeted Trait Improvement in Lentil
3.3 Important Traits of Interest for Breeding Strategy
3.4 Conventional Breeding Approaches for Targeted Trait Improvement in Lentil
3.5 Biotechnological Approaches
3.5.1 Tissue Culture for Targeted Trait Improvement in Lentil
3.5.2 Embryo Rescue Assisted Breeding
3.5.3 Transgenic Approaches for Targeted Trait Improvement
3.5.4 High-Throughput Sequencing for Targeted Trait Improvement in Lentil
3.5.5 Transcriptomics for Targeted Trait Improvement in Lentil
3.5.6 Linkage Mapping and QTLs for Targeted Trait Improvement in Lentil
3.5.6.1 Linkage Mapping from Single Mapping Populations
3.5.6.2 Linkage Mapping from Multiple Mapping Populations (Consensus Maps)
3.6 Conclusion
References
Chapter 4: Updates of Pigeonpea Breeding and Genomics for Yield Improvement in India
4.1 Introduction
4.2 Pigeonpea Breeding and Improvement: A Retrospect
4.2.1 Breeding Methods Followed for Pigeonpea Improvement
4.2.1.1 Mutation Breeding
4.2.1.2 Varietal Improvement Through Selection
4.2.1.3 Varietal Improvement Through Hybridization
4.2.1.4 Pigeonpea Improvement Through Heterosis Breeding
4.3 Constraints for Yield Improvement
4.3.1 Lack of Genetic Diversity
4.3.2 Photoperiod Sensitivity
4.3.3 Linkage with Undesirable Traits
4.3.4 The Issue of Yield Plateau
4.3.5 Harvest Index
4.3.6 Genetic Control of Stresses
4.3.7 Genetic Contamination of Seed Purity
4.4 Genetic Resources Available
4.4.1 Genetic Information
4.4.2 Screening Technologies for Key Stresses
4.4.3 Cytoplasmic Nuclear Male Sterility Systems
4.4.4 Natural Cross-Pollination
4.5 Approaches and Accomplishments of Pigeonpea Breeding
4.5.1 Hybrid Breeding
4.5.2 Breeding for Biotic Stresses
4.5.2.1 Fusarium Wilt
4.5.2.2 Sterility Mosaic Disease
4.5.2.3 Phytophthora Stem Blight Resistance
4.5.2.4 Pod Borers
4.5.3 Breeding Strategies to Combat Abiotic Stresses
4.5.3.1 Drought Tolerance
4.5.3.2 Waterlogging
4.5.3.3 Salinity
4.5.3.4 Temperature
4.5.4 Breeding for High Protein Content
4.5.5 Speed Breeding
4.6 Genomics and Molecular Breeding in Pigeonpea
4.7 Conclusion
References
Chapter 5: Genomics-Assisted Breeding Green Gram (Vigna radiata (L.) Wilczek) for Accelerating Genetic Gain
5.1 Introduction
5.2 Origin, Domestication, and Distribution
5.3 Botany
5.4 Production and Productivity
5.5 Production Constraints
5.6 Genetic Resources
5.7 Genetic Enhancement
5.7.1 Conventional Breeding
5.7.2 Genome Sequence of Green Gram Obtained Through EST-SSR Markers
5.7.3 Genomics-Assisted Breeding
5.7.4 Genome-Wide Association Mapping
5.7.5 Transgenic Technology
5.8 Future Prospects
References
Chapter 6: Breeding for High-Yielding and Disease-Resistant Urdbean Cultivars
6.1 Introduction
6.2 Major Producing Regions
6.2.1 The World
6.2.2 India
6.3 Centers of Origin
6.4 Crop Systematics
6.5 Species Relationship
6.6 Plant Morphology and Floral Biology
6.7 Trait Inheritance
6.8 Genetics of Disease-Pest Resistance
6.9 Breeding Objectives
6.10 Breeding Methods
6.10.1 Mutation
6.10.2 Intraspecific and Interspecific Hybridization
6.10.3 Use of “Omic” Technologies in Urdbean Breeding
6.10.3.1 Tissue Culture and Genetic Transformation
6.10.3.2 Development of Molecular Markers
6.10.3.3 Use of Molecular Markers
6.11 Outlook
6.12 Major Crop Improvement Research Stations
References
Chapter 7: Lentil Breeding in Genomic Era: Present Status and Future Prospects
7.1 Introduction
7.2 Genomic Resources
7.2.1 Molecular Markers
7.2.1.1 Hybridization-Based Molecular Markers
7.2.1.2 PCR-Based Molecular Markers
7.2.1.3 Sequencing-Based Markers
7.2.2 Lentil Genome Sequence
7.2.3 Mapping Populations and Linkage Maps
7.2.4 Transcriptome Analysis for Identification of Candidate Genes
7.2.5 Comparative Genome Analysis
7.3 Transgenic Development
7.4 Future Prospects of Lentil Breeding in Current Genomics Era
References
Chapter 8: Chickpea Breeding for Abiotic Stress: Breeding Tools and ‘Omics’ Approaches for Enhancing Genetic Gain
8.1 Introduction
8.2 Drought Stress
8.2.1 Genetic Sources and Advanced Breeding Strategies Combating Drought Stress
8.3 Effects of Heat Stress
8.3.1 Genetic Sources and Progress of Heat Tolerance in Chickpea
8.4 Salinity Stress
8.4.1 Genetic Sources for Salinity Tolerance in Chickpea
8.5 Impact of Cold Stress in Chickpea
8.5.1 Genetic Resources for Cold Tolerance
8.6 Physiological Trait Breeding and High-Throughput Phenotyping for Abiotic Stress Tolerance
8.6.1 Conventional Breeding Efforts for Developing Abiotic Stress-Tolerant Chickpea
8.6.2 Genomic Resources and QTL Mapping for Drought Stress Tolerance
8.6.3 QTLs Contributing to Heat and Cold Stress Tolerance
8.6.4 Genomic Resources for Elucidating Salinity Stress in Chickpea
8.6.5 Advances in Functional Genomics for Underpinning Various Abiotic Stress-Responsive Candidate Genes
8.6.6 Scope of Sequencing and Re-sequencing Efforts for Investigating Abiotic Stress Tolerance-Related Haplotype Assembly
8.6.7 Progress and Hope of Novel Breeding Technologies for Designing Abiotic Stress-Tolerant Chickpea
8.6.8 High-Throughput Phenotyping (HTP) for Increasing Genetic Gain Under Abiotic Stresses
8.7 Conclusion and Perspective
References
Chapter 9: Recent Advances in Mungbean Breeding: A Perspective
9.1 Introduction
9.2 Production Constraints in Mungbean
9.2.1 Biotic Stress
9.2.2 Abiotic Stress
9.2.2.1 Drought Stress
9.2.2.2 Water Logging Stress
9.2.2.3 Temperature Stress
9.2.2.4 Salinity Stress
9.2.2.5 Pre-harvest Sprouting
9.3 Crop Improvement Strategy
9.3.1 Germplasm Resources
9.3.2 Breeding Goals
9.4 Breeding Procedures
9.4.1 Breeding for Resistance to Biotic Stresses
9.4.1.1 Breeding for Resistance to Diseases
Breeding for Resistance to Viral Diseases
Breeding for Resistance to Fungal Diseases
Powdery Mildew
Anthracnose: Colletotrichum lindemuthianum (Sexual Stage – Glomerella lindemuthianum)
Breeding for Resistance to Bacterial Diseases
Leaf Spot: Cercospora canescens
9.4.1.2 Breeding for Resistance to Insects
Breeding for Bruchid Resistance
9.5 Recent Advances in Mungbean Breeding
9.5.1 Use of Biotechnological Tools to Complement Conventional Breeding
9.5.2 Genomic Resources
9.5.2.1 Development and Use of Markers
9.5.2.2 Bacterial Artificial Chromosome (BAC)
9.5.2.3 EST-SSRs
9.5.2.4 Intron Length Polymorphism (ILP)
9.5.2.5 RNAi Technology
9.5.2.6 Application of Plant Phenomics
9.5.2.7 Genomic Survey Sequences (GSS) in Green Gram
9.6 Future Breeding Emphasis
9.7 Conclusions
References
Chapter 10: Genetic Advancement in Dry Pea (Pisum sativum L.): Retrospect and Prospect
10.1 Introduction
10.2 Dry Pea Area, Production, and Productivity Scenario at Worldwide
10.3 Systematic, Origin, and Domestication
10.4 Available Genetic Resources at Global Level
10.5 Genetic Improvement of Important Agronomic Traits (Retrospect)
10.5.1 Breeding for Lodging Resistance
10.5.2 Breeding for Dwarf Type
10.5.3 Breeding for Biotic Stresses
10.5.3.1 Powdery Mildew
10.5.3.2 Rust
10.5.3.3 Ascochyta Blight
10.5.3.4 Fusarium Root Rot
10.5.3.5 Fusarium Wilt
10.5.3.6 Common Root Rot
10.5.4 Breeding for Abiotic Stresses
10.5.4.1 Heat Stress
10.5.4.2 Drought Stress
10.5.4.3 Frost Stress
10.6 Future Perspectives
References
Chapter 11: Translational Genomics and Breeding in Soybean
11.1 Introduction
11.2 Flowering and Maturity Duration
11.3 Quality Traits
11.3.1 Flavour and Fragrance
11.3.2 Protein Digestibility
11.3.3 Mineral Availability
11.3.4 Oxidative Stability of Soybean Oil
11.3.5 Pyramiding the Desirable Quality Traits
11.4 Diseases
11.4.1 Rust
11.4.2 Soybean Mosaic Virus
11.4.3 Yellow Mosaic Disease
11.5 Future Prospects
References
Chapter 12: Efficient Improvement in an Orphan Legume: Horsegram, Macrotyloma uniflorum (Lam.) Verdi, Using Conventional and Molecular Approaches
12.1 Introduction
12.2 Genetic Resources and Distribution
12.3 Conventional Breeding Strategies
12.3.1 Mutation Studies
12.3.2 Wide Hybridization
12.4 Conventional Versus Molecular Approach
12.5 Molecular Approach for Genetic Improvement
12.6 Conclusion
References
Chapter 13: Molecular and Conventional Breeding Strategies for Improving Biotic Stress Resistance in Common Bean
13.1 Introduction
13.2 Genetic Resources at World Gene Bank
13.3 Common Bean Production Trends and Gaps
13.4 Limiting Bean Yield
13.5 Breeding for Disease Resistance
13.5.1 Viral Diseases
13.5.1.1 Bean Common Mosaic and Bean Common Mosaic Necrosis Viruses
13.5.1.2 Golden Mosaic and Bean Golden Yellow Mosaic Virus
13.5.2 Fungal Diseases
13.5.2.1 Anthracnose (ANT)
13.5.2.2 Angular Leaf Spot (ALS)
13.5.2.3 Powdery Mildew (PWM)
13.5.2.4 Rust
13.5.3 Bacterial Diseases
13.5.3.1 Common Bacterial Blight (CBB)
13.5.3.2 Halo Blight (HB)
13.6 Molecular Breeding
13.6.1 Diagnostic Markers for Disease Resistance Breeding
13.6.2 Tagging and Mapping
13.6.3 MAS for Disease Resistance
13.7 Perspective
References
Index