Abstract Algebra with Applications: In Two Volumes_ Vector Spaces and Groups

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

A comprehensive presentation of abstract algebra and an in-depth treatment of the applications of algebraic techniques and the relationship of algebra to other disciplines, such as number theory, combinatorics, geometry, topology, differential equations, and Markov chains.

Author(s): Karlheinz Spindler
Edition: 1
Publisher: M. DEKKER, CRC PRESS
Year: 1994

Language: English
Pages: 793
City: New York
Tags: Vector Spaces, Groups

TABLE OF CONTENTS




CHAPTER 1................................................ FIRST INTRODUCTION: AFFINE GEOMETRY

CHAPTER 2 .................................................SECOND INTRODUCTION: LINEAR EQUATIONS

CHAPTER 3 ................................................VECTOR SPACES

CHAPTER 4 ......................................................................LINEAR AND AFFINE MAPPINGS

CHAPTER 5........................................ ABSTRACT AFFINE GEOMETRY

CHAPTER 6................................................. DETERMINANTS

CHAPTER 8............................................................... VOLUME FUNCTIONS

CHAPTER 9.......................................................... EIGENVECTORS AND EIGENVALUES

CHAPTER 10 ..................................................CLASSIFICATION OF ENDOMORPHISMS UP TO SIMILARITY

CHAPTER 11............................................................ TENSOR PRODUCTS AND BASE-FIELD EXTENSIONS

CHAPTER 12............................................. METRIC GEOMETRY

CHAPTER 13 ........................................................EUCLIDEAN SPACES

CHAPTER 14 ........................................................LINEAR MAPPINGS BETWEEN EUCLIDEAN SPACES

CHAPTER 15 .......................................................BILINEAR FORMS

CHAPTER 16 .......................................................GROUPS OF AUTOMORPHISMS

CHAPTER 17 ..................................................APPLICATION: MARKOV CHAINS

CHAPTER 18 .......................................................APPLICATION: MATRIX CALCULUS AND DIFFERENTIAL EQUATIONS

CHAPTER 19......................................................INTRODUCTION: SYMMETRIES OF GEOMETRIC FIGURES

CHAPTER 20 .............................................GROUPS

CHAPTER 21........................................................... SUBGROUPS AND COSETS

CHAPTER 22 ..............................................................SYMMETRIC AND ALTERNATING GROUPS

CHAPTER 23 ......................................................................GROUP HOMOMORPHISMS

CHAPTER 24 ....................................................NORMAL SUBGROUPS AND FACTOR GROUPS

CHAPTER 25 ......................................................................FREE GROUPS; GENERATORS AND RELATIONS

CHAPTER 26......................................................................GROUP ACTIONS

CHAPTER 27 .............................................GROUP-THEORETICAL APPLICATIONS OF GROUP ACTIONS

CHAPTER 28.................................................... NILPOTENT AND SOLVABLE GROUPS

CHAPTER 29................................................. TOPOLOGICAL METHODS IN GROUP THEORY

CHAPTER 30............................................... ANALYTICAL METHODS IN GROUP THEORY

CHAPTER 31............................................... GROUPS IN TOPOLOGY