Desenvolvimento de Técnicas de Recristalização de Fitas de Silício para Aplicação Fotovoltaica

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

A presente tese começa por oferecer uma perspectiva geral da indústria fotovoltaica actual, no que respeita às tecnologias e materiais empregues e seus méritos relativos, em particular do ponto de vista económico, pois o objectivo das tecnologias desenvolvidas é, afinal, a redução dos custos dos sistemas fotovoltaicos, condição essencial ao sucesso desta alternativa energética. Procura-se enquadrar as técnicas desenvolvidas no contexto mais vasto da indústria e demostrar a sua pertinência, evidenciando as limitações das tecnologias convencionais e as vantagens das técnicas de cristalização de silício directamente sob a forma de fitas finas. Apresentam- se para tal exemplos de outras técnicas de sucesso na indústria, que servem de referência e de alguma forma inspiraram o presente trabalho. Os detalhes construtivos e critérios de projecto do presente sistema de recristalização por zona fundida, ZMR (Zone Melting Recystallization), são apresentados no capítulo 2. Neste sistema a zona fundida é obtida por concentração óptica com espelhos cilíndricos elípticos confocais. O processo pode eventualmente ser complementado por aquecimento resistivo da fita. Segue-se, no capítulo 3, uma descrição das principais técnicas de recristalização implementadas, a saber, a recristalização óptica e a recristalização por Zona Fundida Linear (óptico-resistiva), cada uma das quais exploradas em diversas variantes com características específicas. De Sinopse X realçar as variantes de STTRECH (Silicon Tape Thickness Reduction and Crystallization) realizadas em atmosfera oxidante e inerte com aumento de área e correspondente redução de espessura dos materiais recristalizados. São referidas as diversas soluções encontradas para um dos problemas mais importantes nas técnicas de geração de fitas, a estabilização dos bordos, e as dificuldades no controlo dos processos, inerentes ao facto de estes estarem ainda num estágio muito incipiente do seu desenvolvimento. Apresentam-se, no capítulo 4, resultados das medidas da distribuição de temperatura no sistema e efeitos desta na velocidade limite de recristalização. Mostra-se que nos regimes limites de funcionamento ocorrem instabilidades da interface sólido-líquido, como o aumento anómalo da curvatura desta, fusão superficial com transporte de massa e formação de facetas, que condicionam a qualidade das fitas produzidas. Mostram-se também resultados relativos aos transientes de temperatura dos processos. As tensões internas, induzidas nas fitas durante o crescimento, constituem a principal limitação à taxa de produção em todas as técnicas de crescimento vertical e são objecto de estudo no capítulo 5. Dada a complexidade do problema são apenas aflorados, principalmente de forma qualitativa, alguns aspectos considerados pertinentes, dos efeitos da distribuição de temperatura nas referidas tensões e indicadas as propriedades mecânicas do silício relevantes para o efeito. São apresentados resultados de medidas das tensões residuais nas fitas produzidas e possíveis razões para a deformação estrutural observada nas mais finas e largas. Sugerem-se também formas de melhorar a distribuição de temperatura no presente sistema, por comparação com outras técnicas de crescimento de fitas. O efeito de parâmetros de recristalização, como a velocidade e a largura da zona, na distribuição das impurezas nas fitas são evidenciados no capítulo 6, apresentando para tal os princípios básicos da técnica de ZMR. São referidos os efeitos da presença dos contaminantes do silício mais relevantes no trabalho desenvolvido, o oxigénio, o carbono e o azoto, e apresentados resultados relativos à concentração destes nas fitas produzidas, assim como observações dos precipitados que lhes estão associados. Finalmente indicam-se diversos tratamentos térmicos que, embora não tenham sido objecto de estudo no presente trabalho, constituem opções de pós-processamento que já demonstraram notáveis incrementos de qualidade em materiais produzidos por outras técnicas de cristalização. No capítulo 7 analisam-se algumas características morfológicas e microestruturais das fitas produzidas, realçando a qualidade da superfície das fitas de recristalização simples em atmosfera oxidante e os problemas inerentes à camada de óxido nas fitas de STTRECH recristalizadas na mesma atmosfera. Não são esquecidos os defeitos específicos das fitas recristalizadas em atmosfera inerte e, em ambos os casos, são oferecidas Sinopse XI explicações para os mesmos. A respeito da microestrutura são recordados alguns conceitos básicos sobre fronteiras de grão, maclas, falhas de empilhamento e deslocações, mecanismos de geração e efeitos na qualidade dos materiais, sendo dados exemplos destes defeitos nos materiais estudados, incluindo de alguns associados à recristalização superficial e à precipitação de oxigénio. Apresentam-se resultados relativos à dimensão característica de grão e densidade de deslocações nas diversas variantes de recristalização, sugerindo em vários casos, tratamentos térmicos específicos para reduzir a densidade dos defeitos observados. Uma breve referência às propriedades ópticas e eléctricas do materiais recristalizados e da forma como estas são afectadas pelas impurezas e defeitos estruturais, indicados anteriormente, é dada no capítulo 8. O comprimento de difusão dos portadores minoritários é tomado como o principal parâmetro de qualidade dos materiais neste trabalho, pelo que a sua influência no rendimento das células fotovoltaicas é evidenciado, assim como os resultados da suas medidas, pela técnica de resposta espectral, para as diversas variantes de recristalização. São também apresentados parâmetros característicos de células realizadas nos mesmos materiais. Finalmente conclui-se fazendo um revisão crítica das técnicas desenvolvidas, dos principais avanços e inovações, e das características dos materiais produzidos, estabelecendo um critério objectivo de avaliação das referidas técnicas.

Author(s): João Henriques
Publisher: Universidade de Lisboa
Year: 2002

Language: Portuguese
Pages: 192
City: Lisbon

Prefácio III
Sinopse IX
Abstract XIII
1. Tecnologias e Materiais para Aplicação Fotovoltaica:
Os Desafios da Indústria 1
1.1 Materiais para Aplicação Fotovoltaica 2
1.2 Pay-Back Energético dos Sistemas 5
1.3 Custos e Incentivos dos Sistemas 7
1.4 Perspectivas e Possibilidades Futuras 9
1.5 Técnicas Convencionais de Cristalização e Corte do Silício 11
1.6 Técnicas de Cristalização do Silício sob a Forma de Fita 14
1.6.1 Edge-defined Film-fed Growth (EFG) 14
1.6.2 String-Ribbon (S-R) 17
1.6.3 Dendritic Web (D-Web) 18
1.7 Técnicas de Recristalização do Silício 20
1.8 Referências 23
VI Índice
2. Descrição do Sistema de Recristalização 33
2.1 Concentração de Radiação 33
2.2 Fontes de Radiação 37
2.3 Corpo do Forno 38
2.4 Sistema de Translação 42
2.5 Controlo da Atmosfera 43
2.6 Referências 43
3. Variantes das Técnicas de Recristalização 45
3.1 Materiais de Base 46
3.2 Recristalização em Atmosfera Inerte 48
3.3 Recristalização em Atmosfera Oxidante 52
3.4 Recristalização por STTRECH em Atmosfera Oxidante 53
3.5 Recristalização Bifásica 55
3.6 Recristalização por STTRECH em Atmosfera Inerte
(Deformação Plástica do Bordo) 56
3.7 Recristalização por Zona Fundida Linear (Óptico-Resistiva) 58
3.8 Consumo Energético dos Processos 59
3.9 Referências 62
4. Distribuição de Temperatura e Efeitos na Zona Fundida 65
4.1 Perfil de Temperatura 66
4.2 Isotérmicas de Oxidação 68
4.3 Velocidade de Cristalização 69
4.4 Efeitos da Velocidade na Forma da Zona 72
4.5 Instabilidades da Interface Sólido-Líquido: Facetas 76
4.6 Transientes de Temperatura 82
4.7 Referências 84
5. Tensões Internas 87
5.1 Efeitos da Distribuição de Temperatura 88
5.2 Propriedades do Silício e Tensões Residuais 91
5.3 Deformação Estrutural 95
5.4 Referências 97
6. Distribuição e Efeitos das Impurezas 100
6.1 Coeficiente de Distribuição 101
6.2 Recristalização por Zona Fundida (ZMR) 103
6.3 Efeitos das Principais Impurezas: Oxigénio, Carbono e Azoto 106
Índice VII
6.3.1 Oxigénio 106
6.3.2 Carbono 110
6.3.3 Azoto 112
6.4 Gettering e Passivação 113
6.5 Referências 114
7. Morfologia e Microestrutura 119
7.1 Superfícies em Atmosfera Oxidante: Camada de Óxido 120
7.2 Superfícies em Atmosfera Inerte: Protuberâncias 124
7.3 Fronteiras de Grão 126
7.4 Sub-Fronteiras de Grão (SGB) 129
7.5 Maclas 131
7.6 Falhas de Empilhamento Induzidas por Oxidação (OSF) 134
7.7 Deslocações 136
7.8 Referências 143
8. Características Ópticas e Eléctricas 149
8.1 Absorção Óptica 150
8.2 Processos de Recombinação 153
8.3 Comprimento de Difusão dos Portadores 154
8.4 Caracterização dos Materiais Recristalizados 159
8.5 Células Fotovoltaicas nos Materiais Recristalizados 162
8.6 Referências 167
9. Conclusões e Perspectivas Futuras 171
9.1 Técnicas de Recristalização Desenvolvidas 172
9.2 Características dos Materiais Produzidos 174
9.3 Apreciação dos Resultados: Critério de Mérito 177
9.4 Referências 179