Высшая математика. Сборник задач в 3-х частях. Часть 1. Аналитическая геометрия. Анализ функции одной переменной

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Учебное пособие. – Минск: БГУ, 2013. — 359 с.
Пособие состоит из 11 глав.
В первой главе вводится основная математическая символика, позволяющая формулировать определения и теоремы в компактной форме, рассматриваются некоторые свойства действительных чисел, использованные в данном пособии. Приводятся сведения из теории комплексных чисел, необходимые при изучении многочленов. Для иллюстрации свойств многочленов рассматривается задача о представлении рациональной функции в виде суммы простых дробей.Во второй главе анализируются элементы векторной алгебры, дано понятие вектора и определены линейные операции над векторами. Рассматриваются скалярное, векторное, смешанное, двойное векторное произведения. В третьей и четвертой главах изучаются прямая, плоскость, а также фигуры второго порядка на плоскости и в пространстве. При изложении материала уклон сделан в сторону векторной алгебры. Пятая глава посвящена фундаментальному понятию математического анализа – понятию предела последовательности, а также свойствам сходящихся последовательностей, необходимым и достаточным условиям сходимости. Особое внимание уделяется e–d- рассуждениям, обычно трудно дающимся начинающим, но без овладения которыми невозможно усвоить предмет.В шестой и седьмой главах изложены понятия предела и непрерывности функций. Даны основные определения, приведены локальные и глобальные свойства непрерывных функций. Перечислены основные методы вычисления пределов, в том числе с использованием асимптотических формул. В восьмой главе излагается материал по дифференциальному исчислению функций одной переменной, приведены правила вычисления производных и дифференциалов, а также приложения дифференциального исчисления. В девятой главе рассматривается важнейшая формула математического анализа – формула Тейлора, иллюстрируется широкое применение ее при вычислении пределов, приближенном вычислении значений функций, а также при исследовании и построении графиков функций. В десятой и одиннадцатой главах анализируется теория интегрирования (не определенный и определенный интегралы), описаны основные методы интегрирования. Приложения интегрального исчисления иллюстрируются на задачах геометрического, физического и биологического содержания

Author(s): Абрашина-Жадаева Н.Г., Русак В.Н.

Language: Russian
Commentary: 1538721
Tags: Математика;Задачники и решебники