A Walk Through Combinatorics: An Introduction to Enumeration and Graph Theory,

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This is a textbook for an introductory combinatorics course lasting one or two semesters. An extensive list of problems, ranging from routine exercises to research questions, is included. In each section, there are also exercises that contain material not explicitly discussed in the preceding text, so as to provide instructors with extra choices if they want to shift the emphasis of their course. Just as with the first three editions, the new edition walks the reader through the classic parts of combinatorial enumeration and graph theory, while also discussing some recent progress in the area: on the one hand, providing material that will help students learn the basic techniques, and on the other hand, showing that some questions at the forefront of research are comprehensible and accessible to the talented and hardworking undergraduate. The basic topics discussed are: the twelvefold way, cycles in permutations, the formula of inclusion and exclusion, the notion of graphs and trees, matchings, Eulerian and Hamiltonian cycles, and planar graphs. New to this edition are the Quick Check exercises at the end of each section. In all, the new edition contains about 240 new exercises. Extra examples were added to some sections where readers asked for them. The selected advanced topics are: Ramsey theory, pattern avoidance, the probabilistic method, partially ordered sets, the theory of designs, enumeration under group action, generating functions of labeled and unlabeled structures and algorithms and complexity. The book encourages students to learn more combinatorics, provides them with a not only useful but also enjoyable and engaging reading. The Solution Manual is available upon request for all instructors who adopt this book as a course text. Please send your request to [email protected]. The previous edition of this textbook has been adopted at various schools including UCLA, MIT, University of Michigan, and Swarthmore College. It was also translated into Korean.

Author(s): Miklós Bóna
Edition: 4th
Publisher: World Scientific
Year: 2016

Language: English
Pages: 614

Contents......Page 14
Foreword......Page 8
Preface......Page 10
Acknowledgments......Page 12
1.1 The Basic Pigeon-Hole Principle......Page 22
Quick Check......Page 24
1.2 The Generalized Pigeon-Hole Principle......Page 25
Exercises......Page 31
Supplementary Exercises......Page 33
Solutions to Exercises......Page 35
2.1 Weak Induction......Page 44
Quick Check......Page 49
2.2 Strong Induction......Page 50
Quick Check......Page 51
Exercises......Page 52
Supplementary Exercises......Page 54
Solutions to Exercises......Page 56
3.1 Permutations......Page 64
3.2 Strings over a Finite Alphabet......Page 67
3.3 Choice Problems......Page 71
Quick Check......Page 74
Exercises......Page 75
Supplementary Exercises......Page 79
Solutions to Exercises......Page 81
4.1 The Binomial Theorem......Page 94
4.2 The Multinomial Theorem......Page 99
4.3 When the Exponent Is Not a Positive Integer......Page 102
Exercises......Page 104
Supplementary Exercises......Page 108
Solutions to Exercises......Page 111
5.1 Compositions......Page 122
5.2 Set Partitions......Page 124
5.3 Integer Partitions......Page 127
Quick Check......Page 133
Exercises......Page 134
Supplementary Exercises......Page 136
Solutions to Exercises......Page 138
6. Not So Vicious Cycles. Cycles in Permutations......Page 144
6.1 Cycles in Permutations......Page 145
6.2 Permutations with Restricted Cycle Structure......Page 151
Quick Check......Page 155
Exercises......Page 156
Supplementary Exercises......Page 158
Solutions to Exercises......Page 161
7.1 Enumerating The Elements of Intersecting Sets......Page 168
7.2 Applications of the Sieve Formula......Page 171
Quick Check......Page 175
Exercises......Page 176
Supplementary Exercises......Page 177
Solutions to Exercises......Page 178
8.1.1 Recurrence Relations and Generating Functions......Page 184
8.1.2 Products of Generating Functions......Page 190
8.1.2.1 The Catalan Numbers......Page 195
8.1.3 Compositions of Generating Functions......Page 197
8.2.1 Recurrence Relations and Exponential Generating Functions......Page 201
8.2.2 Products of Exponential Generating Functions......Page 203
8.2.3 Compositions of Exponential Generating Functions......Page 206
Exercises......Page 210
Supplementary Exercises......Page 212
Solutions to Exercises......Page 216
9.1 The Notion of Graphs. Eulerian Trails......Page 226
9.2 Hamiltonian Cycles......Page 231
Quick Check......Page 233
9.3 Directed Graphs......Page 234
Quick Check......Page 236
9.4 The Notion of Isomorphisms......Page 237
Quick Check......Page 239
Exercises......Page 240
Supplementary Exercises......Page 243
Solutions to Exercises......Page 246
10.1 Minimally Connected Graphs......Page 254
10.2 Minimum-weight Spanning Trees. Kruskal’s Greedy Algorithm......Page 260
Quick Check......Page 264
10.3.1 Adjacency Matrices of Graphs......Page 265
10.4 The Number of Spanning Trees of a Graph......Page 268
Exercises......Page 274
Supplementary Exercises......Page 277
Solutions to Exercises......Page 279
11.1 Introduction......Page 290
11.2 Bipartite Graphs......Page 292
Quick Check......Page 297
11.3 Matchings in Bipartite Graphs......Page 298
11.3.1 Bipartite Graphs with Perfect Matchings......Page 300
11.3.2 Stable Matchings in Bipartite Graphs......Page 304
11.4 More Than Two Colors......Page 306
11.5 Matchings in Graphs That Are Not Bipartite......Page 308
Exercises......Page 312
Supplementary Exercises......Page 314
Solutions to Exercises......Page 316
12.1 Euler’s Theorem for Planar Graphs......Page 322
12.2 Polyhedra......Page 325
12.3 Coloring Maps......Page 332
Quick Check......Page 334
Exercises......Page 335
Supplementary Exercises......Page 336
Solutions to Exercises......Page 338
13.1 Ramsey Theory for Finite Graphs......Page 342
13.2 Generalizations of the Ramsey Theorem......Page 348
Quick Check......Page 351
13.3 Ramsey Theory in Geometry......Page 352
Quick Check......Page 354
Exercises......Page 355
Supplementary Exercises......Page 356
Solutions to Exercises......Page 358
14.1 Pattern Avoidance......Page 364
Quick Check......Page 373
14.2 Stack Sortable Permutations......Page 374
Quick Check......Page 384
Exercises......Page 385
Supplementary Exercises......Page 387
Solutions to Exercises......Page 389
15.1 The Notion of Probability......Page 402
Quick Check......Page 405
15.2 Non-constructive Proofs......Page 406
15.3.1 The Notion of Independence and Bayes’ Theorem......Page 408
15.3.2 More Than Two Events......Page 413
Quick Check......Page 415
15.4 Expected Values......Page 416
15.4.1 Linearity of Expectation......Page 417
15.4.2 Existence Proofs Using Expectation......Page 420
15.4.3 Conditional Expectation......Page 422
Exercises......Page 424
Supplementary Exercises......Page 427
Solutions to Exercises......Page 431
16.1 The Notion of Partially Ordered Set......Page 438
16.2 The M¨obius Function of a Poset......Page 444
16.3 Lattices......Page 452
Exercises......Page 459
Supplementary Exercises......Page 461
Solutions to Exercises......Page 464
17.1.1 Moto-cross Races......Page 472
17.1.2 Incompatible Computer Programs......Page 474
Quick Check......Page 476
17.2 Balanced Incomplete Block Designs......Page 477
17.3 New Designs From Old......Page 479
17.4 Existence of Certain BIBDs......Page 484
17.4.1 A Residual Design of a Projective Plane......Page 486
17.5.1 Coding Theory......Page 487
17.5.2 Error Correcting Codes......Page 488
17.5.3 Formal Definitions About Codes......Page 489
17.5.4 Perfect Codes......Page 493
Quick Check......Page 496
Exercises......Page 497
Supplementary Exercises......Page 499
Solutions to Exercises......Page 500
18.1.2.1 Groups in General......Page 508
18.1.2.2 Subgroups and Cosets......Page 510
18.1.3 Permutation Groups......Page 511
Quick Check......Page 518
18.2.1 Counting Rooted Non-plane 1-2 Trees......Page 519
18.2.2 Counting Rooted Non-plane Trees......Page 522
18.2.3 Counting Unrooted Trees......Page 524
Quick Check......Page 530
Exercises......Page 531
Supplementary Exercises......Page 534
Solutions to Exercises......Page 536
19.1 In Lieu of Definitions......Page 544
19.1.1 The Halting Problem......Page 545
Quick Check......Page 546
19.2.1 BubbleSort
......Page 547
19.2.2 MergeSort......Page 550
19.2.3 Comparing the Growth of Functions......Page 553
19.3.1 Minimum-cost Spanning Trees, Revisited......Page 555
19.3.2 Finding the Shortest Path......Page 558
Quick Check......Page 563
Exercises......Page 564
Supplementary Exercises......Page 567
Solutions to Exercises......Page 568
20.1 Turing Machines......Page 574
20.2.1 The Class P......Page 577
20.2.2 The Class NP......Page 579
20.2.2.1 The Class coNP......Page 581
20.2.2.2 Nondeterministic Turing Machines......Page 584
20.2.3 NP-complete Problems......Page 586
20.2.4 Other Complexity Classes......Page 592
Exercises......Page 595
Supplementary Exercises......Page 597
Solutions to Exercises......Page 598
Bibliography......Page 604
Index......Page 608