A Guide to Additive Manufacturing

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This open access book gives both a theoretical and practical overview of several important aspects of additive manufacturing (AM). It is written in an educative style to enable the reader to understand and apply the material. It begins with an introduction to AM technologies and the general workflow, as well as an overview of the current standards within AM. In the following chapter, a more in-depth description is given of design optimization and simulation for AM in polymers and metals, including practical guidelines for topology optimization and the use of lattice structures. Special attention is also given to the economics of AM and when the technology offers a benefit compared to conventional manufacturing processes. This is followed by a chapter with practical insights into how AM materials and processing parameters are developed for both material extrusion and powder bed fusion. The final chapter describes functionally graded AM in various materials and technologies. Throughout the book, a large number of industrial applications are described to exemplify the benefits of AM. 

Author(s): Damir Godec, Joamin Gonzalez-Gutierrez, Axel Nordin, Eujin Pei, Julia Ureña Alcázar
Series: Springer Tracts in Additive Manufacturing
Publisher: Springer
Year: 2022

Language: English
Pages: 343
City: Cham

Acknowledgement
Introduction
Contents
List of Figures
List of Tables
1 Introduction to Additive Manufacturing
1.1 What is Additive Manufacturing
1.2 Why Do We Need Additive Manufacturing
1.3 Additive Manufacturing Classification
1.4 Vat Photopolymerization—VPP
1.4.1 Stereolithography—VPP-UVL/P (SLA)
1.4.2 Vat Photopolymerisation Digital Light Processing—VPP-UVM/P (DLP)
1.5 Material Jetting (MJT)
1.5.1 PolyJet
1.6 Binder Jetting (BJT)
1.6.1 3D Printing 3DP
1.7 Powder Bed Fusion Technologies (PBF)
1.7.1 Introduction to Powder Bed Fusion Technologies
1.7.2 Electron Beam Technology (PBF-EB/M)
1.7.3 Laser Melting (PBF-LB/M) Technology
1.7.4 Selective Laser Sintering (PBF-LB/P) Technology
1.7.5 HP Multi Jet Fusion (PBF-IrL/P) Technology
1.7.6 Metal Binder Jetting (MBJT) Technology
1.8 Material Extrusion Additive Manufacturing (MEX) Technologies
1.8.1 Material Extrusion with Plungers
1.8.2 Material Extrusion with Filaments
1.8.3 Material Extrusion with Screws
1.8.4 Disadvantages of Using MEX
References
2 General Process Workflow in Additive Manufacturing
2.1 Pre-processing for Additive Manufacturing
2.1.1 File Formats Used in Additive Manufacturing
2.1.2 Part Placement in Machine Envelope, Slicing and Machine Setup
2.2 Build and Post-processing
References
3 Standardisation in AM
3.1 Introduction to Standards
3.1.1 Significance of Standards
3.1.2 Standardisation Bodies
3.2 AM Standards
3.2.1 Structure of AM Standards
3.2.2 ASTM International/ASTM F42
3.2.3 CEN/TC 438
3.2.4 ISO/TC 261
3.3 Reading, Writing and Retrieving Standards
3.3.1 Reading Standards
3.3.2 Writing Standards
3.4 Conclusion
3.5 External Resources
References
4 Design for AM
4.1 The General Thought Process of DfAM
4.2 The Economics of DfAM
4.2.1 Machine Costs
4.2.2 Material Costs
4.2.3 Post-processing Costs
4.2.4 Time Factors That Are Affected by Design
4.2.5 Economics Case Study: Metal AM Manufactured Hydraulic Manifold
4.3 Polymer Design Guidelines
4.3.1 Designing for Material Extrusion (MEX)
4.3.2 Designing for Polymer Powder Bed Fusion (PBF-LB/P)
4.3.3 Designing for Vat Photopolymerisation (VPP)
4.4 Metal Design Guidelines
4.4.1 General Design for Metal PBF
4.4.2 Design for Laser Powder Bed Fusion (PBF-LB/M)
4.4.3 Design for PBF-EB/M Guidelines
References
5 General Process Simulations
5.1 Simulation
5.1.1 Geometry Definition
5.1.2 Discretization
5.1.3 Material Properties
5.1.4 Boundary Conditions
5.1.5 Post-processing Results
5.2 AM Build Process Simulation
5.2.1 Geometry Definition
5.2.2 Discretization
5.2.3 Material Definition
5.2.4 Build-Process Parameters
5.2.5 Post-processing
5.2.6 Limitations
5.3 Optimization
5.3.1 Topology Optimization
5.3.2 Define Design Space
5.3.3 Define Non-design Space
5.3.4 Define Boundary Conditions
5.3.5 Define Constraints and Objectives
5.3.6 Define Optimization Settings
5.3.7 Solve
5.3.8 Interpret the Results
5.3.9 Validate
5.3.10 Topologic Design with Altair Software
5.3.11 Topologic Design with Altair Software for PBF-EB/M
5.3.12 Topologic Design with Altair Software for PBF-LB/P (SLS)
5.4 Lattice-Based Topology Optimization
5.4.1 Lattice Type
5.4.2 Define the Cell Size
5.4.3 Define the Shell Thickness
5.4.4 Define the Minimum/Maximum Density
5.4.5 Interpret the Results
5.4.6 Validate
5.5 Non-parametric Mesh Modelling
References
6 Applications of AM
6.1 AM in Tool Making Application
6.1.1 AM Silicone Short-Run Moulds
6.1.2 AM PolyJet Bridge Moulds
6.2 Design Rules for Bridge PolyJet Moulds
6.2.1 AM (Steel) Hard Moulds
6.2.2 Efficient AM Moulds—Conformal Cooling
6.2.3 Efficient AM Moulds—Optimised Build Time in Tooling
6.3 AM Application in Medicine
6.3.1 Medical Research and Development
6.3.2 Preclinical Testing and Planning
6.3.3 Production of Medical Devices
6.3.4 AM Pharmaceutical Application
6.3.5 AM for Bioprinting/Tissue Fabrication
6.4 AM Applications in the Transport Industry
6.4.1 Aerospace Industry
6.4.2 Railway Industry
6.4.3 Maritime Transport Industry
6.4.4 Automotive Industry
References
7 Development of Material and Processing Parameters for AM
7.1 Development of Materials for Material Extrusion (MEX)
7.1.1 Compounding of Special Materials for Material Extrusion AM
7.1.2 Differential Scanning Calorimetry of Polymeric Materials for MEX
7.1.3 High Pressure Capillary Rheometry of Polymeric Materials for MEX
7.1.4 Rotational Rheometry of Polymeric Materials for MEX
7.1.5 Thermal Conductivity of Polymeric Materials for MEX
7.1.6 Filament Production for MEX
7.2 Development of Materials for PBF Technologies
7.2.1 Metallic Materials
7.2.2 Powder Manufacture and Metal Powders for Additive Manufacturing (AM)
7.2.3 Tests for AM Powder Characterization
7.2.4 Processing Parameters Determination for PBF-EB/M
7.2.5 Qualification of the PBF-EB/M Production
7.2.6 Powder Recycling for PBF-EB/M
7.2.7 Parts Characterizing and Qualification
7.3 Development of Materials for PBF-LB/P
7.3.1 Processing Parameters Determination for PBF-LB/P
7.3.2 Qualification of the PBF-LB/P Production
7.3.3 Powder Blending and Recycling for PBF-LB/P
References
8 Development of FGM and FGAM
8.1 Functionally Graded Material (FGM)
8.1.1 Benefits of FGM
8.1.2 Classifications of FGM
8.1.3 Manufacturing Methods for FGM
8.2 Functionally Graded Additive Manufacturing (FGAM)
8.2.1 The FGAM Process Chain
8.2.2 Design and Modelling of FGAM Parts
8.2.3 FGAM Technologies
8.2.4 FGAM Applications
8.3 Conclusion
References
Conclusion
Appendix A—List of AM Standards