A Gateway to Modern Mathematics Adventures in Iteration II by Shailes Shirali Ramanujan Mathematical Society Universities Press
Author(s): Shailes Shirali Ramanujan Mathematical Society
Series: Mathematics Adventures
Publisher: Universities Press
Year: 2019
Language: English
Commentary: A Gateway to Modern Mathematics Adventures in Iteration II by Shailes Shirali Ramanujan Mathematical Society Universities Press
Pages: 322
Tags: A Gateway to Modern Mathematics Adventures in Iteration II by Shailes Shirali Ramanujan Mathematical Society Universities Press
Cover......Page 2
Half Title......Page 3
Title Page......Page 6
Copyright......Page 7
Contents......Page 10
Preface......Page 15
Review......Page 18
1. Insights from calculus......Page 24
1.1 Error estimates......Page 25
1.2 Attrraction and repulsion......Page 27
1.3 What if the slope is 1 or 1?......Page 28
1.4 Applications......Page 29
1.6 Convergence to 2-cycles......Page 38
1.7 Contraction mappings......Page 39
1.8 An iteration for π......Page 43
1.9 Exercises......Page 45
2.Solution of equations......Page 46
2.1 The Newton–Raphson algorithm......Page 47
2.2 Examples......Page 49
2.3 Comments and extensions......Page 52
2.4 Halley's method......Page 54
2.5 The method of false position......Page 58
2.6 A route to square roots......Page 60
2.7 A route to cube roots......Page 64
2.8 Exercises......Page 66
3.2 Number crunching I......Page 67
3.3 The number e......Page 71
3.4 Explanations......Page 72
3.5 Number crunching II......Page 77
3.6 Maximising x1/x......Page 78
3.7 The occurence of 2-cycles......Page 79
3.8 The outcome when u=el/e......Page 80
3.9 The outcome when 03.10 The outcome when u=e–e......Page 84
3.11 Number crunching III......Page 85
3.12 Exercises......Page 86
4.1 The iteration x↦(x2–l)/2x......Page 88
4.2 Explanations......Page 92
4.3 The iteration x↦(l–x)......Page 96
4.4 Explanations......Page 102
4.5 Period doubling for the iteration x↦cx(1–x)......Page 109
4.6 Exercises......Page 111
5.1 Problem IMO 1986/3......Page 113
5.2 Problem IMO 1993/6......Page 116
5.4 Two USAMO problems......Page 123
5.5 An almost-ran IMO problem......Page 128
5.6 Exercises......Page 130
6.1 Four problems......Page 132
6.2 Solutions......Page 133
6.3 Ramanujan's problem......Page 143
6.4 A problem from the CMJ......Page 147
6.5 Another GCD iteration......Page 152
6.6 The Mersenne iteration......Page 157
6.7 Exercises......Page 163
7. Sarkovskii's thorem......Page 165
7.1 Proof of the theorem of Li and Yorke......Page 169
8. Estimating the speed......Page 175
8.1 The iteration x↦ x–x2......Page 177
8.2 The iteration x↦ x–x3......Page 180
8.3 The iterated sine......Page 181
8.4 The iteration x↦ x–1/x......Page 185
8.5 The Tower of Exponents......Page 187
8.6 Exercises......Page 189
9. Fermat's two-squares theorem......Page 191
9.1 Zagier's proof......Page 192
9.2 A constructive proof......Page 195
9.3 Proof of the algorithm......Page 197
9.4 Exercises......Page 200
10.l The Cantor set......Page 202
10.2 The Sierpinski gasket......Page 205
10.3 The Chaos Game......Page 207
10.4 Iterated function systems (IFS)......Page 211
10.5 Turtle walk......Page 214
10.6 Exercises......Page 225
11.1 Functions defined on the extended complex plane......Page 227
11.2.2 The case α ≠1......Page 230
11.2.3 The case when α is a root of unity......Page 232
11.3 Möbius transformations......Page 234
11.4 lterations under Möbius transformations......Page 238
11.5 Exercises......Page 248
12. Quadratic maps over C......Page 250
12.1 Sample orbits of the map z↦z2+c......Page 251
12.2 Exercises......Page 262
13.1 Julia-Fatou sets......Page 263
13.2 Julia set for the logistic map......Page 269
13.3 The Mandelbrot set......Page 275
13.4 Shape of the Mandelbrct set......Page 278
13.5 Exercises......Page 284
13.6 MATHEMATICA programs......Page 285
Appendix A......Page 286
Appendix B......Page 295
Appendix C......Page 305
Appendix D......Page 310