A Gateway to Modern Mathematics Adventures in Iteration I (Little Mathematical Treasures) by Shailesh Shirali Universities Press
Author(s): Shailesh Shirali
Series: Modern Mathematics Adventures in Iteration
Publisher: Universities Press
Year: 2019
Language: English
Commentary: A Gateway to Modern Mathematics Adventures in Iteration I (Little Mathematical Treasures) by Shailesh Shirali Universities Press
Pages: 272
Tags: A Gateway to Modern Mathematics Adventures in Iteration I (Little Mathematical Treasures) by Shailesh Shirali Universities Press
Cover......Page 2
Half Title......Page 3
Title Page......Page 6
Copyright......Page 7
Contents......Page 9
Preface......Page 13
1.1 A card trick......Page 17
1.2 The riffle shuffle......Page 18
1.3 Feedback......Page 19
2 Terms and Symbols......Page 21
3.1 The GCD algorithm......Page 32
3.2 Squares......Page 35
3.3 Square roots......Page 38
4.1 The iteration......Page 40
4.2 Exercises......Page 41
4.3 Concluding remarks......Page 43
5.2 Exercises......Page 45
5.3 Further comments......Page 47
6.1 Fixed points......Page 48
6.2 Cycles......Page 49
7.1 The Kaprekar iteration......Page 52
7.2 Exercises......Page 54
7.3 Concluding remarks......Page 55
7.4 Recent results......Page 56
7.5 Biographical details......Page 57
8.1 The iteration......Page 60
8.3 Self-born numbers......Page 62
8.4 Junction numbers......Page 63
9.1 The iteration......Page 64
9.2 Exercises......Page 66
10.1 Iterations on functions......Page 67
10.2 Constructing cyclical functions......Page 70
10.3 Fractional iterates......Page 71
10.4 Iterated square root of the negative identity function......Page 73
10.5 Exercises......Page 74
11.1 Appetizers......Page 76
11.2 The Collatz iteration......Page 77
11.3 A two-digit iteration......Page 81
11.4 Amicable numbers......Page 83
11.5 The Fibonacci sequence......Page 90
11.6 A route to square roots......Page 93
11.7 More on square roots......Page 95
11.8 Cube roots......Page 101
12.1 SP numbers......Page 105
12.2 The SSQ iteration revisited......Page 111
12.3 Averages......Page 116
13.1 Introduction......Page 121
13.2 Perpendiculars......Page 122
13.3 Angle bisectors......Page 129
13.4 Medians......Page 135
13.5 Pedal triangles......Page 142
13.6 Altitudes......Page 144
13.7 Pretty pictures......Page 147
13.7.1 Nested Squares......Page 148
13.7.2 Nested Triangles......Page 149
13.8 Fractals......Page 150
13.9 Map-in-a-map......Page 151
13.10 Appendix—analysis of the medians-iteration......Page 159
14.1 The SSQ iteration......Page 167
14.2 The SCB and SFT iterations......Page 171
14.3 The four-numbers iteration......Page 174
15 Solving Equations......Page 179
15.1 An iterative approach......Page 180
15.2 It looks much too arbitrary!......Page 185
16 Cobwebbing......Page 190
16.1 Various examples......Page 191
16.2 Dependence on slope......Page 194
16.3 The case when slope equals ± 1......Page 197
16.4 The iteration x → 1 – 3x2 / 4......Page 198
16.5 Two more case studies......Page 201
16.6 Concluding remarks......Page 203
17.1 Problem IMO 1986/2......Page 205
17.2 Problem IMO 1987/4......Page 207
17.3 Problem IMO 1988/6......Page 209
17.4 Descendants of IMO 1988/6......Page 213
17.5 Exercises......Page 219
18 Miscellaneous Problems......Page 220
A Further Reading......Page 233
B Solutions......Page 235