A Course in Mathematical Logic

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

A comprehensive one-year graduate (or advanced undergraduate) course in mathematical logic and foundations of mathematics. No previous knowledge of logic is required; the book is suitable for self-study. Many exercises (with hints) are included.

Author(s): John Bell, Moshé Machover
Publisher: North-Holland Publishing Company
Year: 1977

Language: English
Pages: 617

Title......Page 0001_0001_1.djvu
Copyright......Page 0002_0001.djvu
Dedication......Page 0005_0001.djvu
Acknowledgements......Page 0007_0001.djvu
Contents......Page 0008_0001.djvu
Interdependence Scheme for the Chapters......Page 0012_0001.djvu
Introduction......Page 0013_0001.djvu
Recommended Reading......Page 0017_0001.djvu
0 – Prerequisites......Page 0019_0001.djvu
1 – Beginning Mathematical Logic......Page 0023_0001.djvu
§1. General considerations......Page 23
§2. Structures and formal languages......Page 0027_0001.djvu
§3. Higher-order languages......Page 0032_0001.djvu
§4. Basic syntax......Page 0033_0001.djvu
§5. Notational conventions......Page 0036_0001.djvu
§6. Propositional semantics......Page 0038_0001.djvu
§7. Propositional tableaux......Page 0043_0001.djvu
§8. The Elimination Theorem for propositional tableaux......Page 0049_0001.djvu
§9. Completeness of propositional tableaux......Page 0051_0001.djvu
§10. The propositional calculus......Page 0052_0001.djvu
§11. The propositional calculus and tableaux......Page 0058_0001.djvu
§12. Weak completeness of the propositional calculus......Page 0061_0001.djvu
§13. Strong completeness of the propositional calculus......Page 0062_0001.djvu
§14. Propositional logic based on ¬ and ∧......Page 0064_0001.djvu
§15. Propositional logic based on ¬, →, ∧ and ∨......Page 0065_0001.djvu
§16. Historical and bibliographical remarks......Page 0066_0001.djvu
2 – First-Order Logic......Page 0067_0001.djvu
§1. First-order semantics......Page 67
§2. Freedom and bondage......Page 0072_0001.djvu
§3. Substitution......Page 0075_0001.djvu
§4. First-order tableaux......Page 0085_0001.djvu
§5. Some “book-keeping” lemmas......Page 0090_0001.djvu
§6. The Elimination Theorem for first-order tableaux......Page 0097_0001.djvu
§7. Hintikka sets......Page 0101_0001.djvu
§8. Completeness of first-order tableaux......Page 0106_0001.djvu
§9. Prenex and Skolem forms......Page 0111_0001.djvu
§10. Elimination of function symbols......Page 0115_0001.djvu
§11. Elimination of equality......Page 0119_0001.djvu
§12. Relativization......Page 0120_0001.djvu
§13. Virtual terms......Page 0122_0001.djvu
§14. Historical and bibliographical remarks......Page 0125_0001.djvu
3 – First-Order Logic (continued)......Page 0126_0001.djvu
§1. The first-order predicate calculus......Page 126
§2. The first-order predicate calculus and tableaux......Page 0133_0001.djvu
§3. Completeness of the first-order predicate calculus......Page 0135_0001.djvu
§4. First-order logic based on ∃......Page 0140_0001.djvu
§5. What have we achieved?......Page 140
§6. Historical and bibliographical remarks......Page 0142_0001.djvu
4 – Boolean Algebras......Page 0143_0001.djvu
§1. Lattices......Page 143
§2. Boolean algebras......Page 0147_0001.djvu
§3. Filters and homomorphisms......Page 0151_0001.djvu
§4. The Stone Representation Theorem......Page 0159_0001.djvu
§5. Atoms......Page 0168_0001.djvu
§6. Duality for homomorphisms and continous mappings......Page 171
§7. The Rasiowa-Sikorski Theorem......Page 0175_0001.djvu
§8. Historical and bibliographical remarks......Page 0177_0001.djvu
5 – Model Theory......Page 0179_0001.djvu
§1. Basic ideas of model theory......Page 179
§2. The Löwenheim-Skolem Theorems......Page 0186_0001.djvu
§3. Ultraproducts......Page 0192_0001.djvu
§4. Completeness and categoricity......Page 0202_0001.djvu
§5. Lindenbaum algebras......Page 0209_0001.djvu
§6. Element types and ℵ₀-categoricity......Page 0221_0001.djvu
§7. Indiscernibles and models with automorphisms......Page 0232_0001.djvu
§8. Historical and bibliographical remarks......Page 0242_0001.djvu
6 – Recursion Theory......Page 0244_0001.djvu
§1. Basic notation and terminology......Page 244
§2. Algorithmic functions and functionals......Page 0248_0001.djvu
§3. The computer URIM......Page 0250_0001.djvu
§4. Computable functionals and functions......Page 0255_0001.djvu
§5. Recursive functionals and functions......Page 0257_0001.djvu
§6. A stockpile of examples......Page 0265_0001.djvu
§7. Church’s Thesis......Page 0275_0001.djvu
§8. Recursiveness of computable functionals......Page 0277_0001.djvu
§9. Functionals with several sequence arguments......Page 0283_0001.djvu
§10. Fundamental theorems......Page 0284_0001.djvu
§11. Recursively enumerable sets......Page 0295_0001.djvu
§12. Diophantine relations......Page 0302_0001.djvu
§13. The Fibonacci sequence......Page 0306_0001.djvu
§14. The power function......Page 314
§15. Bounded universal quantification......Page 0323_0001.djvu
§16. The MRDP Theorem and Hilbert’s Tenth Problem......Page 0329_0001.djvu
§17. Historical and bibliographical remarks......Page 0332_0001.djvu
7 – Logic-Limitative Results......Page 0334_0001.djvu
§1. General notation and terminology......Page 334
§2. Nonstandard models of Ω......Page 0336_0001.djvu
§3. Arithmecity......Page 0342_0001.djvu
§4. Tarski’s Theorem......Page 0345_0001.djvu
§5. Axiomatic theories......Page 0350_0001.djvu
§6. Baby arithmetic......Page 0352_0001.djvu
§7. Junior arithmetic......Page 0354_0001.djvu
§8. A finitely axiomatized theory......Page 0358_0001.djvu
§9. First-order Peano arithmetic......Page 0360_0001.djvu
§10. Undecidability......Page 0365_0001.djvu
§11. Incompleteness......Page 0371_0001.djvu
§12. Historical and bibliographical remarks......Page 0377_0001.djvu
8 – Recursion Theory (continued)......Page 0379_0001.djvu
§1. The arithmetical hierarchy......Page 379
§2. A result concerning TΩ......Page 0387_0001.djvu
§3. Encoded theories......Page 0388_0001.djvu
§4. Inseparable pairs of sets......Page 0390_0001.djvu
§5. Productive and creative sets; reducibility......Page 0394_0001.djvu
§6. One-one reducibility; recursive isomorphisms......Page 0402_0001.djvu
§7. Turing degrees......Page 0406_0001.djvu
§8. Post’s problem and its solution......Page 0410_0001.djvu
§9. Historical and bibliographical remarks......Page 0416_0001.djvu
9 – Intuitionistic First-Order Logic......Page 0418_0001.djvu
§1. Preliminary discussion......Page 418
§2. Philosophical remark......Page 0421_0001.djvu
§3. Constructive meaning of sentences......Page 421
§4. Constructive interpretations......Page 0422_0001.djvu
§5. Intuitionistic tableaux......Page 0426_0001.djvu
§6. Kripke’s semantics......Page 0434_0001.djvu
§7. The Elimination Theorem for intuitionistic tableaux......Page 0440_0001.djvu
§8. Intuitionistic propositional calculus......Page 0451_0001.djvu
§9. Intuitionistic predicate calculus......Page 0452_0001.djvu
§10. Completeness......Page 0456_0001.djvu
§11. Translations from classical to intuitionistic logic......Page 0460_0001.djvu
§12. The Interpolation Theorem......Page 0463_0001.djvu
§13. Some results in classical logic......Page 0470_0001.djvu
§14. Historical and bibliographical remarks......Page 0475_0001.djvu
10 – Axiomatic Set Theory......Page 0477_0001.djvu
§1. Basic developments......Page 477
§2. Ordinals......Page 0486_0001.djvu
§3. The Axiom of Regularity......Page 0495_0001.djvu
§4. Cardinality and the Axiom of Choice......Page 0505_0001.djvu
§5. Reflection Principles......Page 0509_0001.djvu
§6. The formalization of satisfaction......Page 0515_0001.djvu
§7. Absoluteness......Page 0520_0001.djvu
§8. Constructible sets......Page 0527_0001.djvu
§9. The consistency of AC and GCH......Page 0534_0001.djvu
§10. Problems......Page 0540_0001.djvu
§11. Historical and bibliographical remarks......Page 0547_0001.djvu
11 – Nonstandard Analysis......Page 0549_0001.djvu
§1. Enlargements......Page 0550_0001.djvu
§2. Zermelo structures and their enlargements......Page 0554_0001.djvu
§3. Filters and monads......Page 0561_0001.djvu
§4. Topology......Page 0571_0001.djvu
§5. Topological groups......Page 0579_0001.djvu
§6. The real numbers......Page 0584_0001.djvu
§7. A methodological discussion......Page 0590_0001.djvu
§8. Historical and bibliographical remark......Page 0591_0001.djvu
Bibliography......Page 0594_0001.djvu
A-B-C......Page 594
D-E-F-G......Page 0595_0001.djvu
H......Page 0596_0001.djvu
I-J-K-L......Page 0597_0001.djvu
M......Page 0598_0001.djvu
P-R......Page 0599_0001.djvu
S-T......Page 0600_0001.djvu
V-W......Page 0601_0001.djvu
General Index......Page 0603_0001.djvu
A-B......Page 603
C......Page 0604_0001.djvu
D-E-F......Page 0605_0001.djvu
G-H-I......Page 0606_0001.djvu
J-K-L......Page 0607_0001.djvu
M-N-O-P......Page 0608_0001.djvu
Q-R......Page 0609_0001.djvu
S-T......Page 0610_0001.djvu
U-V-W-Z......Page 0611_0001.djvu
Index of Symbols......Page 0613_0001.djvu