A Combinatorial Theory of Possibility

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): D. M. Armstrong
Series: Cambridge Studies in Philosophy
Publisher: Cambridge University Press
Year: 1989

Language: English
Pages: 170

Half Title......Page 1
Series Title......Page 2
Title Page......Page 3
Copyright......Page 4
Dedication......Page 5
Contents......Page 7
Preface......Page 9
PART I: NON-NATURALIST THEORIES OF POSSIBILITY......Page 15
I Theories of possibility......Page 17
II The causal argument......Page 21
I Against the Leibnizian view......Page 28
II Is actuality indexical?......Page 29
III Counterparts......Page 31
IV The plenitude of worlds......Page 33
V Are there indiscernible worlds?......Page 36
VI The empty world......Page 38
VII The Forrest-Armstrong argument......Page 39
IX Non-Naturalist Actualism......Page 44
PART II: A COMBINATORIAL AND NATURALIST ACCOUNT OF POSSIBILITY......Page 49
I Preliminary remarks......Page 51
II Sketch of an ontology......Page 52
III The Wittgenstein worlds......Page 59
IV Fictionalism......Page 63
V Rejection of essentialism......Page 65
I More universals?......Page 68
II More individuals......Page 71
III Contracted worlds......Page 75
IV Rejection of the empty world......Page 77
V A picture of the situation......Page 78
I What if there are no atoms?......Page 80
II Epistemological interlude......Page 85
III Doxastically possible worlds......Page 87
I Introductory remarks......Page 91
II Incompatible properties......Page 92
III Incompatible relations......Page 98
I Higher-order entities......Page 101
II Negation and totality......Page 106
III Causality......Page 111
IV Applying the theory......Page 114
I The notion of supervenience......Page 117
II Internal relations......Page 119
III Further superveniences......Page 125
IV Hume's Distinct-Existences Principle......Page 129
V Dispositions, powers and propensities......Page 131
I Mathematical truth known a priori, analytic and necessary......Page 133
II Mathematical entities......Page 138
III The nature of number......Page 140
IV Sets......Page 147
10 Final questions: logic......Page 152
Works cited......Page 155
Appendix: Tractarian Nominalism, by Brian Skyrms......Page 159
H......Page 167
P......Page 168
S......Page 169
W......Page 170