A canonical arithmetic quotient for actions of lattices in simple groups

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

In this paper we produce an invariant for any ergodic, finite entropy action of a lattice in a simple Lie group on a finite measure space. The invariant is essentially an equivalence class of measurable quotients of a certain type. The quotients are essentially double coset spaces and are constructed from a Lie group, a compact subgroup of the Lie group, and a commensurability class of lattices in the Lie group.

Author(s): David Fisher
Year: 2007

Language: English
Commentary: 48633
Pages: 13