A Banach space in which all compact sets, but not all bounded sets, admit Chebyshev centers

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Given a Banach spaceX, letc 0(X) be the space of all null sequences inX (equipped with the supremum norm). We show that: 1) each compact set inc 0(X) admits a (Chebyshev) center iff each compact set inX admits a center; 2) forX satisfying a certain condition (Q), each bounded set inc 0(X) admits a center iffX is quasi uniformly rotund. We construct a Banach spaceX such that the compact subsets ofX admit centers,X satisfies the condition (Q) andX is not quasi uniformly rotund. It follows that the Banach spaceE=c 0(X) has the property from the title.

Author(s): Vesely L.
Year: 2002

Language: English
Commentary: 44919
Pages: 8