《从一元一次方程到伽罗瓦理论》共二十八章,是讲解解多项式方程及数域上的伽罗瓦理论的一本入门读物。《从一元一次方程到伽罗瓦理论》按历史发展从解一元一次方程讲起,详述了一元二次方程、一元三次方程,以及一元四次方程的各种解案,从而自然地引出了群、域,以及域的扩张等概念。由此,《从一元一次方程到伽罗瓦理论》在讨论了集合论后,用近代方法详细阐明了对称群、可迁群、可解群、有限扩域、代数扩域、正规扩域以及伽罗瓦理论等,同时又引导读者一步步地去解决一系列重大的古典难题,如尺规作图问题、三次实系数不可约方程的“不可简化情况”,以及伽罗瓦的根式可解判别定理等。
Author(s): 冯承天
Publisher: 华东师范大学出版社
Year: 2012
Language: Chinese
Pages: 138
封面
书名
版权
前言
目录
第一部分 解三次和四次多项式方程的故事
第一章 一次和二次方程的求解
1.1一次方程的求解与数集的扩张
1.2二次方程的求解与根式可解
第二章 求解三次方程的故事
2.1波洛那的费尔洛
2.2菲俄与塔尔塔里亚
2.3卡丹与费拉里
第三章 三次方程和四次方程的根式求解
3.1三次方程的根式求解
3.2赫德方法的数学背景
3.3四次方程的根式求解
第二部分 向五次方程进军
第四章 有关方程的一些理论
4.1韦达与根和系数的关系
4.2牛顿与牛顿定理
4.3欧拉与复数
4.4 1的根
第五章 范德蒙与他的“根的对称式表达”方法
5.1范德蒙与范德蒙方法
5.2用范德蒙方法解三次方程
第六章 拉格朗日与他的预解式方法
6.1拉格朗日与他的预解式
6.2用拉格朗日方法解三次方程
6.3用拉格朗日方法解四次方程
6.4 n=5时的情况
第七章 高斯与代数基本定理
7.1高斯与代数基本定理
7.2分圆方程与它的根式求解
7.3开方运算的多值性与卡丹公式
第八章 鲁菲尼、阿贝尔与伽罗瓦
8.1被人遗忘的鲁菲尼
8.2死于贫穷的阿贝尔
8.3死于愚蠢的伽罗瓦
第三部分 一些数学基础
第九章 集合与映射
9.1集合论中的一些基本概念
9.2集合间的映射
9.3集合A中的变换
9.4关系、等价关系与分类
9.5整数集合Z与同余关系
9.6算术基本定理与欧拉函数?(n)
第十章 群论基础
10.1群的定义
10.2群与对称性
10.3对称群Sn
10.4子群与陪集
10.5正规子群与商群
10.6循环群与n次本原根
10.7单群
10.8群的同态映射与同构映射
第十一章 数与代数系
11.1自然数集N作为可换半群及其可数性
11.2整数集合Z与整环
11.3域与有理数域Q
11.4实数域R的不可数性
11.5复数域C与子域
第十二章 域上的向量空间
12.1向量空间的定义
12.2向量空间的一些基础理论
12.3数域作为向量空间
第十三章 域上的多项式
13.1一些基本事项
13.2多项式的可约性与艾森斯坦定理
13.3关于三次方程根的一些定理
第四部分 扩域理论
第十四章 有限扩域
14.1扩域作为向量空间
14.2维数公式
第十五章 代数数与超越数
15.1代数元与代数数
15.2代数数集A是可数的
15.3超越数的存在
15.4代数扩域
第十六章 单代数扩域
16.1最小多项式
16.2单代数扩域
16.3单代数扩域的性质
16.4添加2个代数元的情况
16.5有限个代数元的添加与单扩域
16.6代数数集A是域
16.7 m型纯扩域与根式塔
第五部分 尺规作图问题
第十七章 尺规作图概述
17.1尺规作图的出发点、操作公理与作图法则
17.2最大可作数域K
17.3 Q的可作扩域
第十八章 尺规不可作问题
18.1存在不可作数
18.2立方倍积、三等分任意角与化圆为方
第十九章正n边形的尺规作图
19.1把正n边形的可作性归结为一些简单的情况
19.2有关Pvjj边形的两个域列
19.3分圆多项式
19.4数Pvjj应满足的必要条件
19.5对具有p=2m+1形式的奇素数的讨论
19.6费马数
19.7作出正n边形的“充要条件”
第六部分 两类重要的群与一类重要的扩域
第二十章 对称群Sn
20.1循环与对换
20.2置换的奇偶性
20.3 Sn中元素的对称类与其对换乘积表示
20.4交代群An的性质
20.5 A5是单群
20.6可迁群
第二十一章 可解群
21.1可解群的定义
21.2可解群的性质
21.3 n≥5时,Sn是不可解群
第二十二章 正规扩域
22.1多项式的基域与根域
22.2正规扩域
22.3正规扩域的性质
第七部分 伽罗瓦理论
第二十三章 从域得到群
23.1域E的自同构群
23.2 E作为F扩域时的一类特殊自同构群
23.3正规扩域时的伽罗瓦群
23.4伽罗瓦群的一些重要性质
23.5域F上方程的伽罗瓦群
23.6域F上的一般的n次多项式方程
第二十四章 伽罗瓦理论的基本定理
24.1 伽罗瓦对应
24.2伽罗瓦理论的基本定理
第八部分 伽罗瓦理论的应用
第二十五章 多项式方程的根式可解问题
25.1一些特殊的伽罗瓦群
25.2根式可解的数学含义
25.3根式扩域与根式可解的精确数学定义
25.4循环扩域与拉格朗日预解式
25.5多项式方程根式可解的必要条件
25.6 2x5-10x+5=0不可根式求解
25.7多项式方程根式可解的充分条件
25.8用伽罗瓦理论解三次方程
第二十六章 三次实系数不可约方程有3个实根时的“不可简化情况”
26.1从判别式看根的情况
26.2不可简化情况
26.3根域的表达
26.4 xp-a=0, a ∈R型方程
26.5实根要通过复数得到
第二十七章正n边形尺规作图的充分条件
27.1正n边形尺规作图必要条件的回顾与充分条件的提出
27.2 p群的一个定理
27.3正n边形尺规作图的充分条件
27.4作正17边形的高斯方法
27.5从伽罗瓦理论看正17边形的尺规作图
第二十八章 对称多项式的牛顿定理
28.1一个引理
28.2牛顿定理
附录
附录1关于两个正整数最大公因数的一个关系式
附录2多项式方程的重根问题
附录3计算三次方程的判别式D
参考文献