Author(s): Gan, W. T; Gross, B. H; Prasad, D; Waldspurger, J.-L
Series: Astérisque 346
Publisher: SMF
Year: 2012
Language: English, French
Pages: 318
Tags: Gan–Gross–Prasad conjecture, Langlands Program
1. Introduction
2. Classical groups and restriction of representations
3. Selfdual and conjugate-dual representations
4. The centralizer and its group of components
5. Local root numbers
6. Characters of component groups
7. L-groups of classical groups
8. Langlands parameters for classical groups
9. Vogan L-packets - Desiderata
10. Vogan L-packets for the classical groups
11. Vogan L-packets for the metaplectic group
12. The representation of H and generic data
13. Bessel and Fourier-Jacobi models for GL(n)
14. Restriction Problems and Multiplicity One Theorems
15. Uniqueness of Bessel Models
16. Uniqueness of Fourier-Jacobi Models
17. Local Conjectures
18. Compatibilities of local conjectures
19. Reduction to basic cases
20. Variant of the local conjecture
21. Unramified parameters
22. Automorphic forms and L-functions
23. Global Restriction Problems
24. Global conjectures: central values of L-functions
25. Global L-parameters and Multiplicity Formula
26. Revisiting the global conjecture
27. The first derivative
References
1. Introduction
2. Discrete series parameters
3. Depth zero supercuspidals
4. Branching laws for GLn(Fq)
5. Branching laws for Un(Fq)
6. Langlands-Vogan packets for small unitary groups
7. Theta correspondence
8. Endoscopic packets and theta correspondence
9. Skew-hermitian case: U(1) U(1)
10. Restriction from U(2) to U(1)
11. Theta correspondence for U(2) U(2)
12. Trilinear forms for U(2)
13. Restriction from U(3) to U(2): endoscopic case
14. Restriction from U(3) to U(2): stable case
15. A global argument
16. A finer global argument
References
Introduction
1. Notations et rappels
2. Fonctions très cuspidales
3. Majorations pour le groupe linéaire GLk
4. Majorations pour un groupe spécial orthogonal
5. Entrelacements tempérés
6. Expression spectrale de la limite d'une intégrale
7. Une formule intégrale calculant la multiplicité; application
Références
Références