《数学分析中的典型问题与方法》是为正在学习数学分析(微积分)的学生、准备报考研究生的读者以及从事这方面教学工作的教师编写的参考书籍。该书自1993年首次出版以来,历经25年,一直得到读者的热情赞赏和推崇。
该书的中心内容是全面、系统地回答:数学分析到底有哪些基本问题?每类问题有哪些基本方法?每种方法有哪些具代表性的题目?书中收录了传统典型习题和大量特色研究生入学统一考试试题,它们有相当难度,能检验读者的真实水平。
该书的宗旨是讨论解题的思想方法。为此,对每种方法先以“要点”的形式作概述,再选取典型而有相当难度的例题,逐层剖析,分类讲解;然后通过反复训练,让读者从变化中领会不变的东西,达到“授人以渔”的目的。
此外,对现行教材中比较薄弱、读者十分关心的部分内容,如上(下)极限、函数方程、凸函数、不等式、等度连续、第二积分中值定理、多项式逼近等,该书将它...
《数学分析中的典型问题与方法》是为正在学习数学分析(微积分)的学生、准备报考研究生的读者以及从事这方面教学工作的教师编写的参考书籍。该书自1993年首次出版以来,历经25年,一直得到读者的热情赞赏和推崇。
该书的中心内容是全面、系统地回答:数学分析到底有哪些基本问题?每类问题有哪些基本方法?每种方法有哪些具代表性的题目?书中收录了传统典型习题和大量特色研究生入学统一考试试题,它们有相当难度,能检验读者的真实水平。
该书的宗旨是讨论解题的思想方法。为此,对每种方法先以“要点”的形式作概述,再选取典型而有相当难度的例题,逐层剖析,分类讲解;然后通过反复训练,让读者从变化中领会不变的东西,达到“授人以渔”的目的。
此外,对现行教材中比较薄弱、读者十分关心的部分内容,如上(下)极限、函数方程、凸函数、不等式、等度连续、第二积分中值定理、多项式逼近等,该书将它们列为专题,配以部分高校研究生入学统一考试数学分析试题进行讲解和练习。为开拓读者的视野,此次修订还在第三章和第四章添加了广义导数和定积分定义的简化等内容。
该书内容较多,题目按难易程度分为五个档次,标记“☆”部分为作者特别推荐内容(约占总题量1-3),标记“new”部分为本次修订新加的题,也是热点题。读者可根据自己实际情况,酌情选读。