测度论讲义

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

《测度论讲义(第2版)》系统介绍一般可测空间上的测度与积分,Hausdorff空间上的测度与积分以及测度的弱收敛等,此外还介绍了和测度论有关的概率统计等有关知识,如条件数学期望、正则条件概率、随机变量族的一致可积性、解析集及经典鞅论。第二版增加了Hilbert空间和Banach空间上的测度内容,部分章节也增加了一些新内容和作者的研究成果。

Author(s): 严加安
Series: 中国科学院研究生教学丛书
Edition: 2
Publisher: 科学出版社
Year: 2004

Language: Chinese
Pages: 304
Tags: 测度论, 测度论讲义, 严加安

第二版前言
第一版前言
目录
1 集类与测度
1.1 集合运算与集类
习题
1.2 单调类定理(集合形式)
习题
1.3 测度与非负集函数
习题
1.4 外测度与测度的扩张
习题
1.5 欧氏空间中的Lebesgue-Stieltjes测度
习题
1.6 测度的逼近
习题
2 可测映射
2.1 定义及基本性质
习题
2.2 单调类定理(函数形式)
习题
2.3 可测函数序列的几种收敛
习题
3 积分和空间Lp
3.1 积分的基本性质
习题
3.2 积分号下取极限
习题
3.3 不定积分与符号测度
习题
3.4 空间Lp及其对偶
习题
3.5 两个空间的对偶
3.6 Daniell积分
习题
3.7 Bochner积分和Pettis积分
习题
4 乘积可测空间上的测度与积分
4.1 乘积可测空间
习题
4.2 乘积测度与Fubini定理
习题
4.3 由σ有限核产生的测度
习题
4.4 无穷乘积空间上的概率测度
习题
4.5 Kolmogorov相容性定理及Tulcea定理的推广
习题
4.6 概率测度序列的投影极限
4.7 随机Daniell积分及其核表示
习题
5 Hausdorff空间上的测度与积分
5.1 拓扑空间
习题
5.2 局部紧Hausdorff空间上的测度与Riesz表现定理
习题
5.3 Hausdorff空间上的正则测度
习题
5.4 空间C0(X)的对偶
习题
5.5 用连续函数逼近可测函数
习题
5.6 乘积拓扑空间上的测度与积分
习题
5.7 波兰空间上有限测度的正则性
习题
6 测度的收敛
6.1 欧氏空间上Borel测度的收敛
习题
6.2 距离空间上有限测度的弱收敛
习题
6.3 胎紧与Prohorov定理
习题
6.4 可分距离空间上概率测度的弱收敛
习题
6.5 局部紧Hausdorff空间上Radon测度的淡收敛
习题
7 概率论基础选讲
7.1 事件和随机变量的独立性,0-1律
习题
7.2 条件数学期望与条件独立性
习题
7.3 正则条件概率
习题
7.4 随机变量族的一致可积性
习题
7.5 本性上确界
习题
7.6 解析集与Choquet容度
习题
8 离散时间鞅
8.1 鞅不等式
习题
8.2 鞅收敛定理及其应用
习题
8.3 局部鞅
习题
9 Hilbert空间和Banach空间上的测度
9.1 Rn上Borel测度的Fourier变换和Bochner定理
9.2 测度的Fourier变换和Minlos-Sazanov定理
9.3 Minlos定理
9.4 Hilbert空间上的Gauss测度
9.5 Banach空间上的Gauss测度
参考文献
名词索引