Analyse mathématique III. Fonctions analytiques, différentielles et variétés, surfaces de Riemann

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Ce vol. III expose la théorie classique de Cauchy dans un esprit orienté bien davantage vers ses innombrables utilisations que vers une théorie plus ou moins complète des fonctions analytiques. On montre ensuite comment les intégrales curvilignes à la Cauchy se généralisent à un nombre quelconque de variables réelles (formes différentielles, formules de type Stokes). Les bases de la théorie des variétés sont ensuite exposées, principalement pour fournir au lecteur le langage "canonique" et quelques théorèmes importants (changement de variables dans les intégrales, équations différentielles). Un dernier chapitre montre comment on peut utiliser ces théories pour construire la surface de Riemann compacte d'une fonction algébrique, sujet rarement traité dans la littérature non spécialisée bien que n'éxigeant que des techniques élémentaires. Un volume IV exposera, outre,l'intégrale de Lebesgue, un bloc de mathématiques spécialisées vers lequel convergera tout le contenu des volumes précédents: séries et produits infinis de Jacobi, Riemann, Dedekind, fonctions elliptiques, théorie classique des fonctions modulaires et la version moderne utilisant la structure de groupe de Lie de SL(2,R).

Author(s): Godement, Roger
Publisher: Springer
Year: 2002

Language: French
Pages: 321