Херсон: B&G, 2005. - 78 c.
Сборник методических пособий по курсу «Высшая математика» для студентов Херсонского национального технического университета, включающий краткий теоретический курс, задачи и упражнения с решениями для аудиторной и самостоятельной работы, контрольные работы по следующим темам:
Плоскость и матрицы.Функции нескольких независимых переменных.Неопределенный интеграл.Определенный интеграл.Кратный и криволинейный интегралы.Дифференциальные уравнения.Ряды.Комплексные числа и комплексные функции.Комплексные числа.Определение и основные понятия.
Тригонометрическая форма комплексного числа.
Комплексные функции.Определение и основные понятия.
Элементарные комплексные функции.
Предел и непрерывность комплексной функции.
Производная комплексной функции.
Условия Коши-Римана.
Интегрирование функции комплексного переменного.Интеграл от комплексной функции и его свойства.
Вычисление интеграла.
Теорема Коши.
Интегральная формула Коши.
Особые точки функции.
Вычет функции.
Ряды в комплексной плоскости.Числовые ряды.
Степенные ряды.
Ряд Тейлора.
Задачи для аудиторной работы.Арифметические операции над комплексными числами.
Элементарные функции.
Производная функции комплексного переменного.
Интеграл от функции комплексного переменного.
Теорема Коши и интегральная формула Коши.
Вычисление интегралов с помощью вычетов.
Задачи для самостоятельной работы.