Введение в позиционные дифференциальные игры

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Учебное пособие. — Москва. — МГУ имени М. В. Ломоносова. — 2009 г. — 94 с.
Данный курс содержит основные элементы теории позиционных дифференциальных игр, разработанной в школе Н.Н. Красовского. Позиционная стратегия — это обратная связь, работающая в паре с неизвестным управлением-помехой и обеспечивающая нужное качество для всех движений управляемой системы. Изложение построено вокруг двух задач: задачи наведения управляемой системы на целевое множество и задачи уклонения от целевого множества, образующих в совокупности дифференциальную игру наведения-уклонения. Излагаемые материалы снабжены примерами, иллюстрирующими теорию.
Пособие предназначено для аспирантов и студентов старших курсов, специализирующихся в области управления динамическими процессами.
Содержание
Постановка задач наведения и уклонения.
Управляемая система.
Неформальная постановка задач наведения и уклонения.
Постановка задач наведения и уклонения в классах программных управлений.
Постановка задач наведения и уклонения в классе контр-управлений.
Постановка задач наведения и уклонения в классе позиционных стратегий.
Позиционные стратегии и идеальные движения.
Задача неведения в классе непрерывных позиционных стратегий игрока. Улучшаемость непрерывных позиционных стратегий: пример А.И. Субботина.
Задачи наведения и уклонения в классе позиционных стратегий.
Несовместность задач наведения и уклонения.

Сравнение различных законов управления.
Теория стабильных множеств.
Свойства стабильных множеств.
Маленькая игра.
Стратегия экстремального сдвига.
Множества, порожденные позиционными стратегиями.
Максимальные стабильные множества. Альтернатива.
Устойчивость решений дифференциальных игр.
Процедура управления с поводырем.
Задача наведения для систем с простыми движениями.
Задача наведения в классе контр-управлений первого игрока.
Задача наведения в классе позиционных стратегий первого игрока.
Одномерные задачи наведения.
Понятная процедура построения максимального u-стабильного множества в задаче наведения.
Аппроксимирующая система множеств.
Сходимость попятной процедуры.
Численный метод построения максимального u-стабильного множества в задаче наведения.
Оператор стабильного поглощения. Свойства телесных множеств.
Дискретная по времени, фазовым координатам и множествам управления схема приближенного построения максимальных u-стабильных множеств.
Дискретизация фазового пространства.
Список литературы.
Предметный указатель.

Author(s): Камзолкин Д.В., Кряжимский А.В.

Language: Russian
Commentary: 1222765
Tags: Математика;Теория игр