Уравнения математической физики

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Сборник примеров и упражнений /Сост. А.А.Рогов, Е.Е.Семенова, В.И.Чернецкий, Л.В.Щеголева. Петрозаводск: ПетрГУ., 2001. 220с.
Пособие представляет собой расширенный вариант сборника задач по курсу "Уравнения математической физики" и предназначено для студентов и магистров математического факультета ПетрГУ.
Содержание
Предисловие
Основы операционного исчисления
Понятия оригинала и изображения по Лапласу
Свойства преобразования Лапласа
Восстановление оригинала по изображению
Применение преобразования Лапласа к решению дифференциальных уравнений и их систем
Применение преобразования Лапласа к решению дифференциальных уравнений с запаздывающим аргументом
Применение преобразования Лапласа к решению интегральных уравнений и их систем
Классификация уравнений с частными производными. Канонический вид уравнений с частными производными второго порядка
Дифференциальные уравнения с частными производными
Простейшие дифференциальные уравнения с частными производными. Общее решение
Дифференциальные уравнения с частными производными первого порядка
Классификация линейных уравнений с частными производными второго порядка
Приведение к каноническому виду линейных уравнений с частными производными второго порядка с двумя независимыми переменными
Приведение к каноническому виду линейных уравнений с частными производными второго порядка с n(n 2) независимыми переменными
Метод характеристик
Математическое описание процессов, изучаемых методами математической физики. Вывод уравнений и постановка краевых задач
Вывод уравнений
Постановка краевых задач
Свойства гармонических функций. Краевые задачи для уравнений эллиптического типа
Уравнение Лапласа. Свойства гармонических функций
Простейшие краевые задачи для уравнений Лапласа и Пуассона
Аналитические методы решения краевых задач математической физики
Преобразование краевых задач
Формула Даламбера для волнового уравнения
Метод продолжения
Задача Штурма-Лиувилля. Свойства собственных функций
Метод разделения переменных (Метод Фурье)
Метод интегральных преобразований
Задача Коши для уравнения параболического типа. Формула Пуассона
Ответы и указания
Литература

Author(s): Рогов А.А. и др. (сост.)

Language: Russian
Commentary: 826302
Tags: Математика;Математическая физика