Combinatoire et Représentation du Groupe Symétrique: Actes de la Table Ronde du C.N.R.S. tenue à l'Université Louis-Pasteur de Strasbourg, 26 au 30 avril 1976

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Dominique Foata (auth.), Dominique Foata (eds.)
Series: Lecture Notes in Mathematics 579
Publisher: Springer Berlin Heidelberg
Year: 1977

Language: English-French-German
Pages: VI, 339 p.
City: Berlin; New York


Content:
Front Matter....Pages -
Introduction....Pages 1-10
The papers of Alfred Young 1873–1940....Pages 11-28
Une forme geometrique de la correspondance de Robinson-Schensted....Pages 29-58
La correspondance de Robinson....Pages 59-113
Some order-theoretic properties of the Robinson-Schensted correspondence....Pages 114-120
Une propriété du vidage-remplissage des tableaux de Young....Pages 121-135
A survey on Hall-Littlewood functions and their applications to representation theory....Pages 136-154
Further results on baxter sequences and generalized Schur functions....Pages 155-167
Hopf algebras of symmetric functions and class functions....Pages 168-181
Calcul de Schur et extensions grassmanniennes des λ-anneaux....Pages 182-216
Some combinatorial aspects of the Schubert calculus....Pages 217-251
Note on multiplication theorems for Schur functions....Pages 252-257
Restrictions of characters, generosity, interchange and coloured graphs....Pages 258-266
Permutrization of representations....Pages 267-280
Charaktere mehrfach transitiver Permutationsgruppen....Pages 281-286
Implications of the Macmahon conjecture....Pages 287-296
Monotonicity for structure numbers in theories without identity....Pages 297-308
On the ordering, ranking, and random generation of basic combinatorial sets....Pages 309-339