Классическое введение в современную теорию чисел

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

ПРЕДИСЛОВИЕ РЕДАКТОРА ПЕРЕВОДА Теория алгебраических чисел возникла во второй половине XIX в. из целого ряда не связанных друг с другом задач теории чисел. Первое место среди них занимали задачи о диофантовых уравнениях, таких, как уравнение Ферма или вопросы о представимости чисел квадратичными формами. Другой не менее важный круг идей, стимулировавший развитие алгебраической теории чисел ? теория делимости и законы разложения простых чисел в кольцах целых алгебраических чисел. Впрочем, отделить друг от друга конкретные факты, идеи и конструкции, приведшие к созданию теории алгебраических чисел, вряд ли возможно. Классический период теории завершается созданием теории полей классов, описывающей абелевы расширения полей алгебраических чисел и законы разложения в них. Существует много учебных изложений теории алгебраических чисел. Предлагаемая вниманию читателя книга отличается элементарностью и насыщенностью конкретными фактами и примерами. Ряд вопросов, например, кубический и биквадратичный законы взаимности излагаются в учебной литературе с такой степенью подробности, пожалуй, впервые. Помимо основ теории авторы включили в книгу ряд глав, излагающих более современные достижения, связанные с применением методов алгебраической геометрии к диофантовым уравнениям. Сюда относятся определение дзета-функций алгебраических многообразий, гипотеза Римана?Вейля для многообразий над конечными полями, связь группы рациональных точек на эллиптической кривой с ее дзета-функцией. Подробно разобранные частные случаи являются хорошим введением в общую теорию, с которой читатель может познакомиться по сочинениям более общего характера (см. библиографические указания в конце глав). Последние годы принесли теории чисел заметное оживление: доказана гипотеза Морделла о рациональных точках на кривых рода больше 1, первый случай теоремы Ферма решен для бесконечного числа простых показателей, найдены первые примеры эллиптических кривых с конечной группой Шафаревича. Можно не сомневаться, что книга Айерлэнда и Роузена будет ценным подспорьем для начинающих математиков, желающих принять участие в дальнейшем развитии теории чисел. А. Н. Паршин

Author(s): К. Айерлэнд, М. Роузен
Publisher: Мир
Year: 1987

Language: Russian
Commentary: 1146092156*хор
Pages: 428