Навчальний посібник для студентів. Запоріжжя: ЗНУ, 2008. – 106с.
Навчальний посібник містить теоретичні положення, основні поняття,
актуальні проблеми курсу «Кристалографія».
Зміст
Вступ
Геометрія кристалічного простору
Історичні етапи розвитку кристалографі
Кристали і кристалічний простір
Загальні властивості кристалів
Кристалічна гратка
Теорема про рівність об’ємів примітивних паралелепіпедів
Об’єм елементарної комірки
Індекси вузлів кристалічної гратки, вузлових рядів і вузлових площин
Перша основна теорема ґратчастої кристалографії
Міжплощинна відстань для ортогональної системи координат
Зворотна гратка
Друга основна теорема ґратчастої кристалографії
Універсальна формула для розрахунку міжплощинних відстаней
Основні формули аналітичної геометрії для кристалічної гратки
Умови паралельності вузлового ряду і вузлової площини
Закон зон
Перетворювання координат точок при зміні базису кристалографічної системи
координат
Перетворювання індексів вузлових площин кристалічного простору при зміні
базису кристалографічної системи координат
Опис дифракції хвиль на кристалічній гратці за допомогою зворотної гратки
Графічна інтерпретація умови Лауе
Кристалографічні проекції
Типові розв’язання задач за допомогою сітки Вульфа
Теорія симетрії кристалів
Операції симетрії
Операції і елементи симетрії кінцевих фігур 1-го роду
Операції та елементи симетрії кінцевих фігур 2–го роду
Теорема Ейлера
Теорема косинусів для сферичного трикутника
Співвідношення між кутом сферичного трикутника і відповідній сторони
полярного з ним трикутника
Теорема синусів для сферичного трикутника
Використання теореми Ейлера для вирішення задач кристалографії
Взаємодія елементів симетрії 1 і 2-го роду та їх сполучення
Способи відображення операцій симетрії
Загальні положення теорії груп
Точкові групи симетрії
Граничні групи симетрії (групи Кюрі)
Прості форми кристалів
Гратки Браве
Просторові групи симетрії
Теореми взаємодії просторових елементів симетрії