調和解析学

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): 荷見守助
Series: 数学選書
Publisher: 槙書店
Year: 1977

Language: Japanese
Pages: 152

はしがき
記号の説明
目次
第1章 調和解析学の問題
§1 波動現象の解析
§2 数学的整理
§3 フーリエ変換の解釈
第2章 局所コンパクト可換群
§1 群の定義
§2 部分群と商群
§3 群の準同型
§4 位相空間の定義
§5 距離空間
§6 連続写像と位相空間の構成
§7 コンパクト空間
§8 位相群と局所コンパクト位相群
第3章 ハール測度――ルベーグ測度の拡張
§1 ハール測度の定義
§2 被覆函数
§3 外測度μ*の構成
§4 ハール測度
§5 群環 L¹(G)
§6 L¹(G) の二三の性質
第4章 可換バナッハ環
§1 バナッハ環の定義
§2 代数学からの準備
§3 可環バナッハ環のスペクトル (I)
§4 可環バナッハ環のスペクトル (Il)
§5 ゲルファンド変換
第5章 局所コンパクト距離群上のフーリエ変換
§1 L¹(G) のゲルファンド変換と指標
§2 指標群
§3 L¹(G) のフーリエ変換
§4 正定値函数
§5 ストーン・ワイエルシュトラスの定理
§6 正定値函数のフーリエ変換 (I)
§7 正定値函数のフーリエ変換 (II)
§8 L²(G) のフーリエ変換
第6章 プランシュレルの定理の応用
§1 双対性定理
§2 フーリエ環 A(\widehat{G}) の基本性質
§3 タウバー型定理
附録A. 積分論
附録B. ベクトル値正則函数
参考書
記号索引
索引