Дифференциальное и интегральное исчисление функций одной переменной

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Учеб.–метод. пособие. — Новосибирск: Изд. НГПУ, 2008. — 128с., УДК 517(075.8), eBook, Интерактивное меню.
Данное пособие посвящено тем разделам математического анализа, которые на математическом факультете педагогического университета традиционно изучаются во втором семестре. Содержит тематический план практических занятий, минимальный теоретический материал, проиллюстрированный большим числом примеров, набор задач для практических занятий, образцы вариантов контрольных работ, снабженные ответами, варианты индивидуальных заданий, примерные вопросы и задачи к экзамену.
Пособие адресовано студентам математического факультета педагогического университета.
ОГЛАВЛЕНИЕ.
Предисловие.
Производная и дифференциал функции:
Понятия производной и дифференциала. Основные правила дифференцирования.
Геометрический смысл производной.
Правило Лопиталя.
Производные высших порядков. Формула Тейлора.
Исследование поведения функций с помощью производной.
Графики функций:
Асимптоты графика функции.
Общий план построения графика функции.
Неопределенны интеграл:
Определение, основные свойства, таблица простейших интегралов.
Основные методы интегрирования.
Интегрирование рациональных дробей.
Интегрирование некоторых иррациональностей.
Интегрирование тригонометрических функций.
Определенный интеграл:
Определение, основные свойства, формула Ньютона-Лейбница.
Несобственные интегралы.
Приложения определенного интеграла.
Варианты контрольных работ.
Ответы.
Индивидуальные задания.
Экзаменационные вопросы и задания.
Тематический план практических занятий.
Литература.

Author(s): Семенко Т.И.

Language: Russian
Commentary: 1627368
Tags: Математика;Математический анализ;Дифференциальное и интегральное исчисление