Analyse mathematique II: Calculus differentiel et integral, series de Fourier, fonctions holomorphes

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Roger Godement
Publisher: Springer
Year: 1998

Language: French
Pages: 486

Errata......Page 2
Table des matières du volume II......Page 8
1 - Intégrales supérieure et inférieure d'une fonction bornée......Page 12
2 - Propriétés élémentaires des intégrales......Page 16
3 - Sommes de Riemann. La notation intégrale......Page 24
4 - Limites uniformes de fonctions intégrables......Page 26
5 - Applications aux séries de Fourier et aux séries entières......Page 30
6 - Le théorème de Borel-Lebesgue......Page 36
7 - Intégrabilité des fonctions réglées ou continues......Page 39
8 - La continuité uniforme et ses conséquences......Page 42
9 - Dérivation et intégration sous le signe de l'intégrale......Page 46
10 - Fonctions semi-continues......Page 51
11 - Intégration des fonctions semi-continues......Page 59
12 - Le théorème fondamental du calcul différentiel et intégral......Page 63
13 - Extension du théorème fondamental aux fonctions réglées......Page 71
14 - Fonctions convexes; inégalités de Holder et Minkowski......Page 77
15 - Intégration par parties......Page 85
16 - La série de Fourier des signaux carrés......Page 88
17 - La formule de Wallis......Page 91
18 - La formule de Taylor......Page 94
19 - Changement de variable dans une intégrale......Page 103
20 - Intégration des fractions rationnelles......Page 107
21 - Intégrales convergentes : exemples et définitions......Page 114
22 - Intégrales absolument convergentes......Page 116
23 - Passage à la limite sous le signe de l'intégrale......Page 121
24 - Séries et intégrales......Page 127
25 - Dérivation sous le signe de l'intégrale......Page 130
26 - Intégration sous le signe de l'intégrale......Page 136
27 - Comment rendre C°° une fonction qui ne l'est pas......Page 141
28 - Approximation par des polynômes......Page 147
29 - Fonctions ayant des dérivées données en un point......Page 150
30 - Mesures de Radon sur un compact......Page 154
31 - Mesures sur un ensemble localement compact......Page 164
32 - La construction de Stieltjes......Page 171
33 - Application aux intégrales doubles......Page 179
34 - Définition et exemples......Page 182
35 - Dérivées d'une distribution......Page 187
1 - Relations de comparaison......Page 192
2 - Règles de calcul......Page 194
3 - Développements limités......Page 195
4 - Développement limité d'un quotient......Page 197
5 - Le critère de convergence de Gauss......Page 199
6 - La série hypergéométrique......Page 201
7 - Etude asymptotique de l'équation xe^x=t......Page 203
8 - Asymptotique des racines de sin x.log x=1......Page 205
9 - L'équation de Kepler......Page 207
10 - Asymptotique des fonctions de Bessel......Page 210
11 - Cavalieri et les sommes 1^k + 2^k + ... + n^k......Page 222
12 - Jakob Bernoulli......Page 224
13 - La série entière de cot z......Page 229
14 - Euler et la série entière de arctan x......Page 232
15 - Euler, Maclaurin et leur formule sommatoire......Page 236
16 - La formule d'Euler-Maclaurin avec reste......Page 237
17 - Calcul d'une intégrale par la méthode des trapèzes......Page 239
18 - La somme 1 + 1/2 + ... + 1/n, le produit infini de la fonction gamma et la formule de Stirling......Page 240
19 - Prolongement analytique de la fonction zêta......Page 245
1 - La formule intégrale de Cauchy pour un cercle......Page 248
2 - Fonctions et mesures sur le cercle unité......Page 252
3 - Coefficients de Fourier......Page 259
4 - Produit de convolution dans T......Page 263
5 - Suites de Dirac dans T......Page 268
6 - Séries de Fourier absolument convergentes......Page 272
7 - Calculs hilbertiens......Page 273
8 - L'égalité de Parseval-Bessel......Page 275
9 - Séries de Fourier des fonctions dérivables......Page 282
10 - Distributions sur T......Page 285
11 - Le théorème de Dirichlet......Page 293
12 - Le théorème de Fejér......Page 299
13 - Séries de Fourier uniformément convergentes......Page 301
§4. Fonctions analytiques et holomorphes......Page 305
14 - Analyticité des fonctions holomorphes......Page 306
15 - Le principe du maximum......Page 308
16 - Fonctions analytiques dans une couronne. Points singuliers Fonctions méromorphes......Page 311
17 - Fonctions holomorphes périodiques......Page 317
18 - Les théorèmes de Liouville et de d'Alembert-Gauss......Page 319
19 - Limites de fonctions holomorphes......Page 328
20 - Produits infinis de fonctions holomorphes......Page 331
21 - Fonctions analytiques définies par une intégrale de Cauchy......Page 339
22 - La fonction de Poisson......Page 341
23 - Applications aux séries de Fourier......Page 343
24 - Fonctions harmoniques......Page 346
25 - Limites de fonctions harmoniques......Page 350
26 - Le problème de Dirichlet pour un disque......Page 353
27 - La formule sommatoire de Poisson......Page 356
28 - La fonction thêta de Jacobi......Page 361
29 - Formules fondamentales de la transformation de Fourier......Page 365
30 - Extensions de la formule d'inversion......Page 368
31 - Transformation de Fourier et dérivation......Page 373
32 - Distributions tempérées......Page 378
Postface. Science, technologie, armement......Page 388
Index......Page 478
Table des matières du volume I......Page 482